
Device Event Based Test Automation Module

for Smartphone

Jae-Ho Lee, Seok-Jin Yoon, Do-Hyung Kim

Mobile S/W Platform Team

Electronics and Telecommunications Research Institute

Daejeon, Korea

{bigleap,kimdh,sjyoon}@etri.re.kr

Cheol-Hoon Lee

Dept. of Computer Engineering

Chungnam National University

Deajeon, Korea

clee@cnu.ac.kr

Abstract—Many mobile companies have adopted Linux to their

products. The Linux-based mobile platform is a very complex
software stack consisting of three layers: the kernel, the middleware,
and the application. The complexity of Linux-based software makes
integration testing more difficult. Legacy testing has focused on
testing APIs and GUI-based applications by manual input. There is
no automatic way to achieve the integration test because of
applications driven by sensors such as GPS, accelerometer, and so on.
This paper defines the event types generated from each layer in a

Linux-based mobile software stack, and proposes an event-based test
automation system which is able to capture and playback events
generated from hardware sensors as well as user input. The proposed
system handles all events with a uniform interface at the kernel
device level, which enables developers to achieve an easy and
efficient integration testing in some automatic way.

Mobile Platform; integration testing; test automation; device
event

I. INTRODUCTION

Over the past five years, mobile industry leaders have
adopted Linux-based mobile platforms for their products such
as smartphones, webpads, and tablets since the first Linux-
based smartphone, A760 by Motolora, was sucessful in China.
The mobile platform, based on a general purpose operating
system (GPOS) like Linux, consists of very complex software
modules which make integration testing difficult and time-
consuming. Vendors need an easy and quick method of testing
the entire software which includes the kernel, middleware and
applications in order to shorten time-to-market. Current
methods require the testing of individual units of source code
to determine if they are correct for use and verifying GUI-
based applications by a tester’s manual input[1][2]. An off-the-
shelf tool like TestQuest provides the ability for capturing and
replaying the events from and to GUI components and uses a
script-based scenario file, in order to support test automation.

Most software vendors distribute a Software Development
Kit (SDK) to conveniently develop mobile applications
running on their mobile platform. The Linux-based mobile
platforms for the smartphone, Android, LiMo, OpenMoko also
provide their own SDK which includes a phone emulator based
on hardware emulation technology, which enables developers

to test their applications without physical hardware(hereafter
referred to as actual hardware)[6][7][8]. These emulators use
QEMU which is an open source project and allow an ARM-
based instruction set to run an unmodified mobile software
stack on a guest operating system[5]. Fig.1 shows the concept
of a switchable full software stack. A simulator based on
hardware emulation separates the emulated mobile software
stack from a desktop. This architecture allows the mobile
software stack to be entirely replaced with another mobile
platform and provides a virtual execution environment on a
hardware emulation layer. The mobile software stack includes
a target agent which interworks with a SDK plug-in for the test
automation.

Figure 1. The architecture of a switchable mobile software stack

II. TESTING TOOL OF MOBILE PLATFORM

A. System Overview

Fig. 2 shows the concept of a test automation tool which
provides the ability of logging and replaying the events
generated from each layer in the mobile software stack,
including kernel layer, middleware layer and application layer.
We classify the events generated from each software layer into
three categories: input event, IPC event and platform event.

 Input event has two types: user input and sensor input.
User input is generated in the foreground running
application by user input devices such as a keypad, a
touch screen, a volume button and so on. Sensor input
is spontaneously generated from hardware modules
such as a GPS, accelerometer, received signal strength
indication (RSSI), battery, etc.

 IPC event is communication messaging between
system-level processes and user-level processes. We
use D-BUS which is an inter-process communication
(IPC) mechanism. Communication happens through a
central server application called message bus system.
The implemented test automation tool is able to collect
predefined IPC messages through D-BUS [5].

 Platform event is dependent on an application manager
in mobile platform. When the running state of an
application is changed, the application manager
notifies the lifecycle events such as installing,
removing, upgrading, starting, stopping, pausing,
restarting, termination and so on.

An emulator’s software stack is exactly the same as an
actual hardware’s ARM-based binary image. It means the
mobile software stack image for an ARM processor can be
used for the emulator and the actual hardware.

Figure 2. The concept of event-based testing tool

B. Test Automation Module

Fig. 3 shows the internal architecture of a test automation
module which enables the capturing and playing of events
generated from a mobile software stack. It largely consists of
two parts: the Target Agent and the Test Automation Module
(a SDK plug-in for test automation), as already indicated in Fig.
1. Target Agent is an application program to be installed on the
mobile software stack. The Test Automation Module, which is
made up of several plug-ins for eclipse-based SDK, is installed
on the host desktop.

 Target Agent communicates with an external testing
tool for logging and feeding a variety of events. In the
logging procedure, events generated from the mobile
platform are collected and sent to the test automation
module. In the feeding procedure, previously logged
events are received from the test automation module
and injected into the designated software module.

 Connector sets up the network connection with an
emulator or an actual hardware, depending on the
configuration of the Test Execution Manager.

 Event Synchronizer controls the time interval during
the event injection. The time difference of processing
events is due to the gap of the computing power

between an actual hardware and an emulator on the
host. Synchronization is needed when the events
logged from an actual hardware are injected to the
emulator, or vice versa.

 Event Logger collects the events from the mobile
software stack and saves them in a database (DB).

 Event Feeder injects the events into the mobile
software stack to be tested through Connector and
Target Agents.

 Scenario Manager creates a set of new test scenarios
with the logged events and defines the combination of
scenarios with previously created scenarios in DB.
Test scenario consists of pairs (an event, the
predicted outcome) which are used for comparing the
actual outcomes of the injected events.

 Test Execution Manager converts events in the test
scenario file into a transferrable format in Event Feeder
and Connector. It also provides the functionality of
managing a testing lifecycle such as starting, stopping,
pausing, restarting, repeating and so on.

Figure 3. The Architecture of test automation module

At the beginning of testing, manual work is needed for
creating and editing the test scenario, but once created and
saved in DB, complex testing can be done with less human
labor.

III. TEST AUTOMATION BASED ON DEVICE EVENT

A. Event Device

User input devices such as a mouse, a keyboard and a
touchpad along with sensor-based input devices such as
accelerometer and GPS are registered in the Linux kernel and
can be accessed with the generic input event interface through
device files under “/dev/input.” The Linux kernel provides a
data structure for the input event as shown below[5].

struct input_event {

struct timeval time; /*the Time at which the event happened*/

__u16 type; /*event type*/

__u16 code;/*event code*/

__s32 value;/*the value the event carries*/

};

TABLE I. shows the events sequentially generated in the
kernel while pressing a mouse button. This input event

mechanism passes the events with a timestamp generated in the
kernel straight to the user program.

TABLE I. TOUCH EVENT IN LINUX INPUT DEVICE MODEL

No Type Code Value Meaning

1 EV_KEY BTN_TOUCH 1 pressed state

2 EV_ABS ABS_X 342 X-value

3 EV_ABS ABS_Y 128 Y-value

4 EV_SYN 0 0 data end

TABLE II. shows an example of mapping physical devices
into event device files in the LINUX kernel. This configuration
is determined in runtime depending on the types of input
devices an embedded system has. The proposed test
automation module is able to manage sensor input data as well
as user input data, by using the identical interface, which
enables GUI-based applications and sensor data-driven
applications to be tested one time. A sensor like an
accelerometer generates too many input events, even by simple
movement, which creates overload for testing nomal
applications without using a sensor. In order to avoid this
problem, the proposed test automation module provides the
functionality of selecting devices to be monitored.

TABLE II. AN EXAMPLE OF EVENT DEVICE CONFIGURATION IN LINUX

Event Device File Mapped physical Device Event Source

/dev/input/event0 Keypad User Input

/dev/input/event1 Touchpad User Input

/dev/input/event2 Power Button User Input

/dev/input/event3 Accelerometer(Sensor1) Hardware Sensor

/dev/input/event4 Accelerometer(Sensor2) Hardware Sensor

.

/dev/input/eventX

B. Eclipse-based Integrated Testing Environment

The proposed test automation module consists of eclipsed-
based plug-ins and is able to connect both the hardware and a
simulator at the same time, as shown Fig. 4.

Figure 4. Eclipse-based integration-testing environment

Interworkings between the actual hardware and simulator
provide developers with an efficient mechanism for test
automation of their software modules, via several paths for
event transmission. Event Logger records the events generated
from a simulator or an actual hardware, and Event Feeder plays
back the saved event in a simulator or an actual hardware.

There are four possible paths of logging and feeding input
events as shown in TABLE III. It means we can record events
from the simulator and inject them into an actual hardware, and
vice versa.

TABLE III. AN EXAMPLE OF EVENT DEVICE CONFIGURATION IN LINUX

 Logging Events Feeding Events

1 Actual Hardware Actual Hardware

2 Actual Hardware Simulator

3 Simulator Simulator

4 Simulator Actual Hardware

Additionally, interworkings between the hardware and
simulator provide to mobile industries a best-case scenario for
supporting remote debugging. The field test engineer with a
mobile phone checks communication-related functions in a
CDMA service area. Currently communication-related events
as well as user input events can be collected through Target
Agent. If the engineer finds that the actual phone has flaws in
communication-related functionality, he sends the events
recorded on site to software developers, who may be working
even in non-CDMA service areas, and they play back the
events on the simulator in order to fix defects. This is a more
efficient way to debug software because it reduces testing and
debugging time considerably by avoiding a test executor’s
manual input.

C. Experiment on device-based event

We implemented the proposed modules for test automation
on an open project called OpenMoko. The project aims at
delivering Linux-powered phones with a fully open source
software stack. The OpenMoko-powered Neo FreeRunner
phone is currently being sold, and project contributors are
expecting general developers to create more applictions based
on OpenMoko. TABLE IV shows a test environment for our
experiment. The identical OpenMoko-based mobile software
stack is used for both actual hardware and simulator where test
applications are installed by Debian packaging system.

TABLE IV. TEST EVIRONMENT

 Specifications brief

Software

 Stack

Kernel layer: Linux 2.6

Middleware Layer: OpenMoko

Application Layer: OpenMoko application suites

Opkg: Debian-based packaging system

Autual

Hardware

Neo FreeRunner by FIC :

- 128MB SDRAM, 256MB flash

- 400Mhz ARM processor(Samsung 2442 SOC)

- Two 3D Accelerometers(STM LIS302DL)

Simulator

QEMU

- Hardware emulation technology

Host desktop: Fedora 10

Fig. 5 shows an example of capturing events generated
from two accelerometers in Neo FreeRunner, while running the
Gwaterpas application leveling tool using an accelerometer.
These events are used for testing applications using an
accelerometer on the simulator. The events previously
generated from the mobile software stack in an actual phone
are transferred to the mobile software stack on top of the
simulator by the test automation module. The applications on a

simulator are started and executed by the injected events
without a tester’s manual input.

Figure 5. Logging events generated from two accelerometers

Fig. 6 shows application testing based on user input

through a touchpad. Fig. 7 shows an example of monitoring an
application lifecycle based on D-BUS. The IPC events are

generated and saved while running the mobile software stack,

and they are used for comparison of actual IPC events

generated from the mobile stack during the test. Fig. 8

illustrates accelerometer-driven application testing by using the

previously recorded events, as shown in Fig. 5

Figure 6. Applictation testing based on user input event

Figure 7. Software module testing based on IPC event

Figure 8. Application tesing based on accelerometer-based event

From above examples, Fig. 6 to Fig. 8, we verify the

feasibility of testing the entire mobile software stack by using

the events generated from each software layer in the mobile

stack.

IV. CONCLUSION

As Linux-powered embedded mobile products increase, it
becomes more difficult to do integration testing for a full
software stack, which includes the kernel, middleware and
applications. Furthermore, the Linux-based mobile platform
consists of many open projects developed by different groups.
Therefore it is crucial to verify that the added module will not
break the harmony of operating the entire system, when a
new software module is inserted into the existing mobile
platform.

This paper implements a test automation tool of a mobile
software stack by using a simulator based on hardware
emulation and device events generated in a kernel. Though our
approach to handle the input events relies on a Linux driver
with a generic event device mechanism, other sensors don’t
support this mechanism. Challenges remain with hardware
emulation for the newly emerging sensors, and support for
simulator and device driver should be implemented in order to
support the generic event device in the Linux kernel.

REFERENCES

[1] Atif M. Memon, Martha E. Pollack and Mary Lou Soffa, Hierarchical

GUI Test Case Generation Using Automated Planning, IEEE

Transactions on Software Engineering., vol. 27, no. 2, pp. 144-155, Feb.
2001

[2] Jessica Chen and Suganthan Subramaniam, Specification-based Testing

for GUI-based Applications, Software Quality Journal, 10, 205-224,
2002

[3] J. H. Lee, Y. H. Kim, S. J. Kim, “Design and Implementation of a Linux

Phone emulator supporting automated application testing”, ICCIT 2008,
Proc. Vol2, pp.256-259.

[4] J. H. Lee, D. H. Kim, S. J. Kim, C. Ryu, C. H. Lee, “A Test

Automation of a full Software Stack on Virtual Hardware-based
simulator”, ICCIT 2009, Nov. 24-26, Seoul, Korea, pp37-39.

[5] Fabrice Bellard, “QEMU, a Fast and Portable Dynamic Translator,”

USENIX 2005, proceedings, April 2005, pp41-46.

[6] http://developer.android.com/sdk

[7] http://limofoundation.org

[8] http://wiki.openmoko.org

[9] Vojtech Pavlik, ”input.txt”, ftp.kernel.org

