
 
Abstract—Recognition of wall surfaces and other structural line segment features is an important aspect of LASER 

based Simultaneous Location and Mapping (SLAM) applications. Traditional indoor structural environment modeling 
algorithms employ schemes such as clustering of point clouds for parameterization and identification of the wall surfaces 
that serve as features to localize and map the environment of interest. RANSAC based line fitting and Spike detection are 
two common approaches in this regard. Alternatively, extensions to feature based stereo have also been used, mainly 
focusing on 3D line descriptions, along with techniques such as half-plane detection, real-plane or facade reconstruction, 
plane sweeping etc. Noise in the range data (from either LASER or stereo), especially in low texture regions, accidental 
line/plane grouping under lack of cues for visibility tests, presence of depth edges or discontinuities that are not visible in 
the 2D image and difficulties in adaptively estimating metrics for clustering can hamper efficiency of practical systems. In 
order to counter these issues, we propose a novel framework to use monocular imagery of the scene fusing 2D local and 
global features such as edges, texture and regions to detect wall surfaces and then use the resulting wall segmentation 
masks to guide the range data clustering. The focus of this paper is on the novel wall surfaces detection algorithm. 
Accuracy of recognition of wall surfaces is estimated with respect to a number of different material surface types, found 
in typical indoor environments. Testing on a representative dataset yielded recognition rates in excess of 95%, at 97% 
wall detection accuracy. 

I. INTRODUCTION 

Recognition of wall surfaces and other structural line segment features is an important aspect of LASER based 
Simultaneous Location and Mapping (SLAM) applications. Traditional indoor 3D structural environment 
modeling algorithms employ schemes such as clustering of dense point clouds for parameterization and 

identification of the 3D surfaces. RANSAC based plane fitting [1] and Spike detection are common approaches in 
this regard. Alternatively, extensions to feature based stereo have also been used, mainly focusing on 3D line 
descriptions, along with techniques such as half-plane detection, real-plane or facade reconstruction, plane sweeping 
etc. Pioneering work in this regard is attributed to Baillard et al. [2,3] and Zisserman et al. [4]. Other important 
works include facade detection and multi-level regeneration by Lee - Nevatia [5]. Recent efforts at plane grouping 
based on PCA and visibility tests include [6] and [7]. The literature in building 3D line descriptor based structure 
analysis is also quite vast. Recent articles include Hausdorff measure based grouping [8] and model based 
recognition [9]. However, the performance of most of these techniques rapidly degrade in the presence of high 
amounts of noise (in range data such as stereo) under conditions of low illumination and in regions of low-texture or 
sparse features. Furthermore, accidental line/plane grouping (due to shelves/ cupboards), especially under lack of 
cues for visibility tests, presence of depth edges or discontinuities that are not visible in the 2D image and difficulty 
in adaptively estimating metrics for clustering can hamper efficiency of practical systems for door/doorway 
detection. On the other hand, traditional high quality laser [10] or panoramic camera based [11, 12] (multi-view) 
room modeling (often using piecewise planar modeling [13], triangulation [14] or space carving [15]) are often 
impractical for cost-effective domestic robots. 

In order to counter these issues, we propose a novel framework to use monocular imagery of the scene fusing 2D 
local and global features such as edges, texture and regions to detect wall surfaces and then use the resulting wall 
segmentation masks to guide the range data clustering. The focus of this paper is on the novel wall surfaces 
detection algorithm. Accuracy of recognition of wall surfaces is estimated with respect to a number of different 
material surface types, found in typical indoor environments.  

II. OVERVIEW 

This paper offers the following novel contributions. Firstly, this paper demonstrates efficient indoor wall 
segmentation eliminating issues of over-segmentation caused by highlights and shadows, typical of conventional 

segmentation algorithms. Secondly, this paper offers a novel texture analysis algorithm that helps identify wall 
surfaces. Performance tests of the texture analysis algorithm, evaluated with respect to typical textured material 
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surfaces found in indoor environments shows high accuracy levels exceeding 95%.  
The images used for evaluating the developed algorithms have been obtained from indoor environments under a 

variety of lighting conditions, with different wall, floor types as well as other material artifacts. The major issues in 
detection of walls in indoor environments arise from over segmentation in areas with highlights or shadows. 
Conventional segmentation algorithms are full gradient algorithms that do not distinguish between gradients arising 

from reflectance/ shading effects caused by diffuse or specular lighting from fixtures on the wall or from windows. 
These algorithms also do not analyze gradients arising from material properties of the objects differently from the 
gradients due to shading. As a result, shading effects can cause significant over-segmentation as demonstrated in 
Figure 1. In this paper, we present a gradient classification algorithm that is robust to such effects. Once the 

gradients have been classified, efficient segmentation is obtained using a simple edge based scheme. Finally, a 
region selection algorithm is presented which categorizes regions in the image as wall surfaces or otherwise. This 
algorithm uses the following assumptions for the wall modeling/ hypothesis: 

 

Wall Modeling 
 

Walls are typically characterized by  

1. Homogeneous regions or areas with regular texture, usually with high numeric intensity values. 
2. Largest single color regions in a given scene, especially under conditions of no large occluding obstacles in the 

vicinity. 

3. Hold pixels with the farthest visible range information on planes parallel to the ground plane. 
4. Frequent loss of homogeneity in color values owing to lighting and shading effects.  

III. ALGORITHM 

A. Color Pre-processing 

The color images obtained from conventional cameras are pre-processed to eliminate gross errors. Locations of 
dead or noisy sensor pixels are pre-determined and the intensity at these locations approximated by nearest-neighbor 
filling. As a pre-processing step, the noise in the color image is reduced using a bilateral filter that preserves salient 
gradient values and hence sharp edges that are crucial for algorithms in the following stages of processing, including 

2D segmentation.  

B. Intrinsic Reflectance Gradients Extraction 

The gradients of the filtered color image are estimated and these gradients are decomposed into shading and 

reflectance components. The shading component captures the lighting and shadows in the scene while the 
reflectance component captures the distinction in the material surfaces. This step is helpful to eliminate the 
highlights and shadow patterns created by light fixtures typically mounted on walls. Since walls are the primary 

focus of this SLAM enabling framework, it is beneficial to use reflectance components as they are devoid of 
gradients pertaining to highlight and shadow artifacts, thus representing the wall faces as true homogenous surfaces. 
The algorithm we employ is based on the intrinsic image extraction algorithm developed by Weiss [19] and 

extended by Tappen [20]. In the presented framework, gradients in the intensity channel of the color image are 
classified as ‘shading’ or ‘reflectance’ gradients by modeling an asymptotic linear color variation across neighboring 
pixels. The formulation for intrinsic image extraction [20] is 

ǡݔሺܫ ሻݕ ൌ ܵሺݔǡ ǡݔሻ���ܴሺݕ  ሻ�����ሺͳሻݕ

where ܵሺݔǡ ǡݔሻ is the shading image, ܴሺݕ ǡݔሺܫ ሻ is the reflectance image andݕ  ሻis the input image defined in theݕ

dimensions ݔ�and ݕ. Using a logarithmic transformation and applying multiple scale selective gradient/ derivative 

filters ௫݂ ǡ ௬݂ we have the gradient images ܨ௫ and ܨ௬, the ሺݔǡ  ሻ components of which can be classified as shading ifݕ

the color pixels satisfy the constraints ܿ௫ାଵ ൌ ௫ and ܿ௬ାଵܿߙ ൌ  ௬ respectively and as reflectance otherwise. Theܿߙ

component images can be reconstructed as  
ǡݔሺܥ ሻݕ ൌ ݃ כ ሾሺ ௫݂ሺെݔǡ െݕሻ כ ௫ሻܨ  ሺ ௬݂ሺെݔǡ െݕሻ כ  ௬ሻሿ��ሺʹሻܨ

where, * represents convolution, ܨ௫and ܨ௬are component (shading/ reflectance) gradients and ݃ is obtained from 

݃ כ ሾሺ ௫݂ሺെݔǡ െݕሻ כ ௫݂ሺݔǡ ሻሻݕ �ሺ ௬݂ሺെݔǡ െݕሻ כ ௬݂ሺݔǡ ሻሻሿݕ ൌ  ���ሺ͵ሻߜ�



The shading and reflectance components as defined by equation (2) are shown in Fig. 1C and 1D. In our 

framework, the reflectance image gradients ܨ௫ and ܨ௬ are used directly in the segmentation process.  

 

C. 2D Reflectance Gradient based Segmentation  

 Using the gradients ܨ௫ and ܨ௬ obtained in the previous stage, segmentation is carried out using a low 

complexity multi-scale edge analysis scheme. The scheme links edges found at various scales (by analysis of 
reflectance only gradients) using proximity and similarity measures to form enclosed regions or segments. The 

choice of the segmentation algorithm is based on the goal of meeting real-time constraints for deployments on 
robots, which excludes the possibility of using algorithms like the Felzenszwalb-Huttenlocher (FH) graph based 
algorithm. It can be seen from Fig. 1B, 1E and 1F that the output of the proposed ‘reflectance gradient only’ 
segmentation approach is superior to traditional full-gradient algorithms like FH (with gradients as grid graph edge 

weights) and the variant of the multi-scale edge analysis algorithm operating on full-gradients, given the given 
context of wall detection with lighting and shading changes. The performance is comparable in regions devoid of 
lighting changes. Any possible over-segmentation in regions of high texture does not affect the output since these 

regions are unlikely to be wall surfaces. The segmented regions are then subjected to a region selection algorithm to 
select walls and wall-like structural surfaces.  

D. Wall Region Isolation using Texture Analysis 

The characteristic features of walls such as low texture, high homogeneity, large pixel spans and representations 
using high gray-scale intensity values are used in region selection. The current framework employs 2 levels of 
thresholds (hard and soft) on measures of entropy (E), homogeneity (H), uniformity energy (U), correlation (R), 

contrast (C) and other constraints based on the Grey Level Co-occurrence Matrix (GLCM) to select wall-like 
surfaces. Based on a number of positive and negative training examples (Fig. 2 and Fig. 3), weighting factors were 
estimated using a regression approach. Estimated soft threshold values, along with the assigned confidence values of 

the measures on condition conformance (in brackets) for the two-class separation (positive wall classification) are 
H>0.99 (1.0), C<0.0275 (1.0), R>0.9 (0.9), U>0.6 (0.3) and E<5.5 (0.8). R can also be undefined or slightly 
negative under near perfect surface homogeneity and reducing slightly below this threshold for walls with rough 

Figure 1. Intrinsic Image Extraction and Segmentation (A) Input color image (B) Segmentation using the standard Felzenszwalb-Huttenlocher (FH) 
graph based algorithm – demonstrates high clutter in regions of the left wall with lighting changes (C) Shading intrinsic image (D) Reflectance intrinsic 
image – note that C and D (obtained by inversion of input image gradients classified as shading or reflectance respectively) (E) Segmentation on the input 
image using a low complexity multi-scale full gradient edge analysis scheme (F) Segmentation on the input image with the same scheme using 
reflectance-only gradients – shows superior performance in wall regions affected by lighting changes in comparison with full-gradient image 
segmentation schemes such as the graph based FH. Similar values of gradient and region size thresholds were used for all three segmentation scenarios. 

A B C D E F 

Figure 2. Sample image texture chips used for training/ weight estimation for wall detection – Positive training examples 



texture such as in the case of visible brick layouts. U is unreliable and varies with the lighting changes; ideally 1.0 
under no lighting change or natural lighting but drops to 0.3 under artificial lighting/ large lighting changes.  

 

 
The hard threshold values are H>0.96 (0.8), 

C<0.0475 (0.7), R>0.85 (0.6), U>0.3 (0.1), E<7.0 
(0.5). The surface is classified as a wall if the 
aggregate confidence value exceeds 3.0 out of a 
maximum of 4.0. An alternative approach to learn 

these weights based on in situ adaptive learning in 
the environment of interest based on SVM was also 
evaluated. 

IV. RESULTS 

 

 On a representative data set of 80 image chips of 
various material textures found indoors, such as 
wood, tile, brick, rock, vegetation, carpet, cloth, 

curtain, steel, bronze, tree bark, granite etc., besides 
painted wall surfaces, the simple classifier achieved 
a classification rate of 95%, with a wall detection rate of 97.87%. False alarms were caused due to white curtains, 
steel and floor tiles that were ‘wall-like’ or homogenous. The features were robust to wall colors and surface 

roughness. Objects such as uniformly colored doors and cupboard doors had confidence measures close to that of 
walls. Since these surfaces can also be helpful in mapping, they can used in further analysis. Thresholds on pixel 
spans of the surfaces (> Iw*Ih/15, where, Iw is image width and Ih is image height) and average gray-scale intensity (> 

100/255), can further help reduce the detected segments to the set of primary room surfaces. Use of SVM to 
adaptively estimate these thresholds based on in situ training in a specific environment of deployment of the SLAM 
system of the robot produced wall detection accuracies of about 95%. Fig. 4 demonstrates the results of the 

segmentation and region selection approach and compares the performance with the output of the region selection in 
combination with the FH segmentation algorithm. Note that weights were selected to permit identification of floors, 
in addition to ceiling and walls for this specific test. While the number of mislabeled pixels is 70292 with FH, this 

number is less than half (at 32069) for our framework. The region masks thus obtained can be used for refining 
range feature points. Fig.5 presents additional results under a variety of scenarios in a given home environment of 
interest with dim spot lighting. It can also be seen from Fig. 5 that the approach works quite robustly, irrespective of 
lighting and shading effects on walls and under heavy clutter. 

Figure 4. Segmentation and Regions of Interest Selection (A) Input color 
image (B) Ground Truth (Manual Segmentation) for walls and wall-like 
regions (floors, ceiling etc.) (C) Results using FH (mislabeled pixels: 
70292) (D) Results using our framework (mislabeled pixels: 32069) – 
note the correspondence to Fig. 1B and 1F respectively, mislabeled 
pixels are estimated by XOR logical gating with the ground truth. 
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Figure 3. Sample image texture chips used for training/ weight estimation for wall detection – Negative training examples 



V. FUTURE WORK 

Integration of the wall detection algorithm with a SLAM system based on Stereo or LASER forms the next phase 

work. Such a system can be expect to improve the robustness of detection and tracking of features necessary for 
SLAM, resulting in an efficient 3D indoor mapping system. Implementation of algorithm on GPU for rapid 
operation along with the SLAM system is the future goal of this effort. 
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Figure 5. Results of segmentation (row 2) and wall detection (row 3) for various input scenarios (row 1). In the segmentation output, 
segments are colored uniquely while detected wall regions in the wall detection output are in white. 


