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Abstract— Today, because of the rapid developments in both 
computer hardware and software industries, the increase in the 
storage capacities of huge databases, the data mining and the 
usage of the useful patterns that reside in the databases, became a 
very important research area. In parallel with the rapid increase 
in the data stored in the databases, effective use of the data is 
becoming a problem. To discover the rules or interesting and 
useful patterns from these stored data, the data mining 
techniques are used. If the data is incomplete or inaccurate, the 
results extracted from the database during the data discovery 
phase would be inconsistent and meaningless. Rough sets theory 
is a new mathematical approach used in the intelligent data 
analysis and data mining if data is uncertain or incomplete. This 
approach is of great importance in cognitive science and artificial 
intelligence, especially in machine learning, decision analysis, 
expert systems and inductive reasoning.  
There are many advantages of the rough set approach in 
intelligent data analysis. Some of these advantages are being 
suitable for parallel processing, finding minimal data sets, 
supplying effective algorithms to discover hidden patterns in 
data, valuation of the meaningfulness of the data, producing 
decision rule set from data, being easy to understand and the 
results obtained can be interpreted clearly. In the last years, the 
rough sets theory is widely used in different areas like 
engineering, banking and finance.  

Keywords - rough sets theory, data mining, decision table, rule 
discovery  

I.  INTRODUCTION  

Today, the size of the data stored in the databases of the 
organizations is growing each day and therefore we face 
difficulties about obtaining the valuable data. Databases are a 
collection of relational and non-recurring data to meet the 
demands of the organizations. Because the data stored in the 
databases is growing each day, it is getting harder for the users 
to reach the information. In the last few years, because of the 
rapid developments in both computer hardware and software 
industries, the increase in the storage capacities of huge 
databases, the data mining and the usage of the useful patterns 
that reside in the databases, became a very important research 
area. To discover the rules or interesting and useful patterns 
among these stored data in the databases, the Data Mining 

techniques are used. Storing huge amount of increasing data in 
the databases, which is called information explosion, it is 
necessary to transform these data into necessary and useful 
information. Using conventional statistics techniques fail to 
satisfy the requirements for analyzing the data, in the last 
years, the newly developed concepts Data Mining and 
Knowledge Discovery in Databases are getting more 
important. One of the approaches used in data mining and 
knowledge discovery is rough sets theory. According to this 
method, which is proposed in the beginning of 1980’s, it is 
thought that knowledge can be obtained from every object in 
the universe. 
In this study, a sample application about rule discovery from a 
decision table using rough sets theory is presented. 
 

II. DATA  MINING  AND KNOWLEDGE DISCOVERY 

IN DATABASES 

Data Mining is a discovery process of the hidden information 
from the data which is yet unknown and potentially useful. On 
the other hand, according to Raghavan and Sever, data mining 
discovers the general patterns and relations hidden in the data 
[1].  
Decision rules are one of the widely used techniques to 
present the obtained information. A decision rule summarizes 
the relation between the properties. To transform the raw data 
residing in the database into valuable information, several 
stages of data processing is required. Data Mining is an 
iterative process that acts as a bridge the gap between logical 
decision-making and the data, and is possible the classification 
for finding the useful samples or using and combining the 
classification rules from the samples. This process combines 
the approaches used in different disciplines like machine 
learning, statistics, database management systems, data 
warehousing, and constraint programming [1].  
In recent years many successful machine learning applications 
have been developed, in particular in domain of data mining 
and knowledge discovery. One of common tasks performed in 
knowledge discovery is classification. It consists of assigning 
a decision class label to a set of unclassified objects described 



by a fixed set of attributes (features). Learning algorithms 
induce various forms of classification knowledge from 
learning examples, i.e., decision trees, rules, Bayesian 
classifiers. Decision rules are represented as logical 
expressions of the following form: 
IF (conditions) THEN (decision class) 
where conditions are formed as a conjunction of elementary 
tests on values of attributes. A number of various algorithms 
have already been developed to induce such rules.  
Decision rules are one of the most popular type of knowledge 
used in practice; one of the main reasons for their wide 
application is their expressive and easily human-readable 
representation [2]. 
There are many successful applications of data mining process 
in many different areas. In Data mining applications, many 
methods to discover the useful patters are available and each 
method has advantages and disadvantages over the others. 
However, if needed, the advantages of different methods could 
be combined and hybrid methods could be created. The 
process of creating hybrid methods is a work of combining 
computational intelligence tools. 
Many algorithms are used to implement a DM process. The 
reason is that some technologies result better than the others 
for different tasks, states and subjects do. In the core of the 
data mining lies a model creation process that represents a 
data set. A model creation process that represents a data set is 
generic for all DM products, on the other hand, the process 
itself is not generic. 
Some methods used in DM processes are rough sets theory, 
Bayesian networks, genetic algorithms, neural networks, fuzzy 
sets and inductive logic programming.  
DM functions are used to determine the pattern types that may 
exist in the DM tasks. Generally, DM tasks are classified into 
two categories: descriptive and estimator. Descriptive mining 
tasks characterize the general properties of the data in the 
database. On the other hand, estimator mining makes 
inferences from the available data to make estimations [3]. 
The samples of the DM functions and resulting discovered 
pattern types are classification, clustering, summarization, 
estimation, time series analysis, association rules, sequence 
analysis and visualization. 
 

III.  ROUGH SETS THEORY  

Rough sets theory is proposed by [4] in the beginning of 
1980’s and it is based on the assumption that a knowledge can 
be obtained from each object in the universe [5, 6]. 
In rough sets theory, the objects, characterized by the same 
information, have the same existing knowledge; this means 
they are indiscernible. Indiscernibility relationship produced 
using this way forms the mathematical basis of the rough sets 
theory. The sets of the same indiscernible objects are called 
“elementary set” and form the smallest building blocks 
(atoms) of the information about the universe. Some 
combinations of those elementary sets are called “crisp set”, 
otherwise the set is called “rough set” Each rough set has 
boundary region. For example, like the unclassified objects 

with certainty. Significantly, rough sets, in contrast precise 
sets, cannot be characterized by the information of their 
elements. A rough set and a precise set pair are called the 
lower and upper approximation of the related rough set. Lower 
approximation contains all the objects belong to the set, but 
upper approximation contains the objects that may belong to 
the set. The differences between these lower and upper 
approximations define the boundary region of the rough set. 
The lower and the upper approaches are two basic functions in 
the rough sets theory.  
There are many advantages of the rough sets approach in data 
analysis. Some of them are as follows. 

• It finds minimal data sets and generates a decision 
rule from the resulting data. 

• It performs the clear interpretations of the results and 
evaluation of the meaningfulness of the data. 

• Many algorithms based on rough sets theory in 
particular are suitable for parallel processing [6]. 

• Rough sets can handle large volume of and any type 
of data. This capability is very useful in engineering 
analysis and modeling that several most appropriate 
solutions exist, that many sub-systems are managed 
by many variables and the relations exist between the 
sub-systems and affecting the performance of each 
other. 

• Non-linear or discontinuous functional relations 
modeling capability supplies a strong method that can 
qualify the multi-dimensional and complex patterns. 
Because generated rules and used properties are not 
excessive, the patterns are concise, strong and sturdy. 
In addition, it supplies effective algorithms to find the 
hidden patterns in the data. 

• Rough sets can identify and characterize the 
uncertain systems.  

• Because the rough sets show the information as easy 
to understand logic patterns, where the inspection and 
validity of the data required or the decisions are taken 
by the rules and suitable for the supported situations, 
this method is successful [7].  

 

IV.  BASIC CONCEPTS OF ROUGH SETS THEORY 

The basic concepts of rough sets theory are explained below. 
 
A     Information Systems 
In rough sets theory, a data set is represented as a table and 
each row represents a state, an event or simply an object. Each 
column represents a measurable property for an object (a 
variable, an observation, etc.).  This table is called an 

information system. More formally, the pair ( )A,U=Α  

represents an information system. U is a finite nonempty set 
that is called universe and A  is a finite nonempty set of 

properties. Here, for A∈∀a , aVUa →: . The set aV   is 

called the value set ofa .  Another form of information 
systems is called decision systems. A decision system (i.e., 
decision table) expresses all the knowledge about the model. 



A decision system is { }( )dU ∪=Α A,  form of any 

information system. Here, A∉d  are decision attributes. 

Other attributes { }da −∈A  are called conditional attributes. 

Decision attributes can have many values, but usually they 
have a binary value like True or False [8, 9].  
 
B     Indiscernibility 
 
Decision systems, which are a special form of information 
systems, contain all information about a model (event, state). 
In decision systems, the same or indiscernible objects might 
be represented more than once or the attributes may be too 
many. In this case, the resulting table will be bigger than 
desired. The relation about indiscernibility is as follows. 
If a pair of relation XXR ×⊆ is either reflective (if an 

object relates to itself xRx), symmetrical (if xRythen yRx) 

or transitive (if xRy and yRz  then xRz ) then it is an 

equivalence relation. The equivalence class of Xx ∈  
element contains all Xy ∈ objects, wherexRy . Provided 

that ( )A,U=Α  is an information system, then there is an 

equivalence relation between any A⊆B  and a ( )BINDΑ : 

( ) ( ) ( ) ( ){ }yaxBaaUyxBIND =∈∀∈=Α |, 2           (1) 

( )BINDΑ , −B is called indiscernibility relation. 

If ( ) ( )BINDyx Α∈, , then the objectsx  and y  are 

indiscernible with the attributes in B . The equivalence class 

of indiscernibility relation −B is represented by [ ]Bx  [8, 10]. 

The indiscernibility relation ( )BINDΑ  separates a universal 

set U , given as a pair of equivalence relation, into an 

{ }rXXX .,,........., 21  equivalence classes family. All 

equivalence classes family { }rXXX .,,........., 21  defined by 

the relation ( )BINDΑ  in set U  forms a partition of set U  

and it is represented by ∗B . The equivalence classes family 
∗B  is called classification and represented by the expression 

( )BINDU Α/ . The objects belonging to the same 

equivalence classes iX  are indiscernible; otherwise, the 

objects are discernible by attributes subsetB . The equivalence 

classes iX , ( )r.,,.........2,1  of ( )BINDΑ  relation are called 

elementary sets B  in an information systemΑ .  

[ ]Bx shows an elementary set B  containing the element x  

and it is defined by the following equation (2): 

[ ] { }yxINDUyx B Α∈= |             (2) 

A sequenced pair ( )( )BINDU Α,  is called approximation 

space. Any finite combination of elementary sets in an 
approximation space is called a set defined in the 
approximation space [7]. A  elementary sets of an 

information system ( )A,U=Α  are called the atoms of 

information system Α . 
 
C      Discernibility Matrix 

 
The study on the indiscernibility of the objects is carried out 
by [11]. In this study, indiscernibility function and 
indiscernibility matrix related to the creation of efficient 
algorithms for creating minimal feature subsystems sufficient 
to define all the aspects in a given information system are 
presented.  
Let us assume that Α  is an information system that contains 

n  number of objects. The indiscernibility matrix ΑM  for the 

information system Α is a nn×  symmetrical matrix, 

containing the elements pqc  shown below. Each element pqc  

of this matrix comprises the attributes set that distinguishes the 

objects px  and qx .  

( ) ( ){ }qppq xaxaac =∈= |A ,     

( )nqp ...,,.........2,1, =                (3) 

Conceptually the indiscernibility matrix ΑM  is a UU ×  

matrix. In order to generate the indiscernibility matrix, we 

should consider the different object pairs. Because qppq cc =  

and ∅=ppc  for all objects px  and qx , it is not necessary 

to calculate half of the elements when generating the 

indiscernibility matrix ΑM . That will lead to a reduction in 

computational complexity.  
 

D   Discernibility Function 

Indiscernibility function is a function that defines how to 
distinguish an object or an object set from a certain subsystem 
of an object universe. Indiscernibility function is a 
multiplication of Boolean sums. The indiscernibility matrix 

ΑM  for any object Ux ∈ , the indiscernibility matrix is 

generated as follows.  Indiscernibility function Αf  for an 

information system is a Boolean function of m number of 

Boolean variables ∗∗∗
maaa ...,,........., 21  corresponding the 

attributes maaa ..,,........., 21 . Indiscernibility function Αf  is 

expressed as follows: 

( )
{ }∅≠≤≤≤∨∧

=
∗∗

∗∗∗
Α

pqpq

m

cnpqc

aaaf

,1|

.,,........., 21

                                 (4)
 

The formulas below are obtained: 

( ) ( ){ }qppq xaxaac ≠∈= |A   ( )nqp ,,.........2,1, =    (5) 

{ }pqpq caac ∈= ∗∗ |              (6) 



It might be possible to generate an indiscernibility function 

from an indiscernibility matrix ΑM  related to the 

object Ux ∈ .   

The function ( )xfΑ  is a multiplication function of the sum of 

Boolean variables Α  while the variable ∗a  refers to the 

attributea . Every combination of ( )xfΑ comes from the 

object Uy ∈  that cannot be distinguished from x  and each 

term in the combination represents the property that 
distinguishes one from another.  

( ) ( ) ( ){ }∏ ∑
∈

∗
Α ∅≠∈=

Uy
AA yxveMyxMaaxf ,,| (7) 

The base contents of ( )xfΑ in the universe U  show the 

smallest subsets of Α  that is required distinguishing the 
objects from the objectx . 

V. SET APPROXIMATIONS 

The basic idea underlying the rough sets theory is to generate 

the set approaches using the pair relation ( )BINDΑ . If X  

cannot be accurately defined using the attributes of A , then 
the lower and upper approximations are expressed.  Let us 

assume that ( )A,U=Α  is an information system and 

A⊆B  and UX ⊆ . X  can be approached only using the 

information contained in B , when X  generates B -lower 

and B -upper approximations, represented by XB  and XB , 

respectively. Here, the lower and upper approximations are 
defines as follows: 

[ ]{ }XxxXB B ⊆= |                   (8) 

[ ]{ }∅≠∩= XxxXB B|                                            (9) 

The objects in XB , B are classified certain members of X  

on the base of the information contained in B .The objects in 

XB  can be classified probable members of X  on the base of 
the information contained inB .  

( ) XBXBXBNB −=                                                   (10) 

The equation (10) is called B -boundary region ofX , and 
then it comprises the objects that cannot be classified certainly 
members of X  on the base of the information contained 

in B . The set XBU −  is called B -outside region ofX , 

and it comprises the objects that certainly not belong to X  on 
the base of the information contained inB .  

If ( ) ∅=−= XBXBXBNB , which is XBXB = , the 

set B  is called certain set. ( ) ∅≠−≠ XBXBXBNB If 

XBXB ≠ , then the set B  is called rough set. In this case, 

the set B  can be qualified only with lower and upper 

approximations. Fig. 1 shows the lower and upper 
approximations of setX . 
 

 
    Figure 1. Upper and lower approximations of set X  

 
The lower and upper approximations have the properties that 
are shown below: 

1. ( ) ( )XBXXB ⊆⊆                         (11) 

2. ( ) ( ) ∅=∅=∅ BB ,  ( ) ( ) UUBUB ==       (12) 

3. ( ) ( ) ( )YBXBYXB ∪=∪           (13) 

4. ( ) ( ) ( )YBXBYXB ∩=∩          (14) 

5. YX ⊆  implies ( ) ( )YBXB ⊆  and 

( ) ( )YBXB ⊆             (15) 

6. ( ) ( ) ( )YBXBYXB ∪⊇∪          (16) 

7. ( ) ( ) ( )YBXBYXB ∩⊆∩                        (17) 

8. ( ) ( )XBXB −=−           (18) 

9. ( ) ( )XBXB −=−          (19) 

10. ( )( ) ( )( ) ( )XBXBBXBB ==         (20) 

11. ( )( ) ( )( ) ( )XBXBBXBB ==         (21) 

Here, X−  means XU − .       
One can define the following four basic classes of rough sets, 
i.e., four categories of vagueness: 

• X  is roughly B -definable, iff ( ) ∅≠XB  and 

( ) UXB ≠ . 

• X  is internally B -undefinable, iff ( ) ∅=XB  

and ( ) UXB ≠ . 

• X  is externallyB -undefinable, iff ( ) ∅≠XB  

and ( ) UXB = . 

• X  is totally B -undefinable, ( ) ∅=XB  and 

( ) UXB = . 

The intuitive meaning of this classification is the following. 



X  is roughly B -definable means that with the help of  B  
we are able to decide for some elements of U  that they 

belong to X  and for some elements of  U  that they belong 
to - X . 
X  is internally B -undefinable means that usingB  we are 
able to decide for some elements of U  that they belong to -

X  but we are unable to decide for any element  U  whether 
it belongs to X . 
X  is externally B -undefinable means that usingB  we are 
able to decide for some elements of U  that they belong to X  

but we are unable to decide for any element  U  whether it 
belongs to -X . 
X  is totally B -undefinable means that usingB  we are 
unable to decide for some element of U  whether it belongs to 
X  or - X [8]. 
The universe can be divided into three disjoint regions using 
the upper and lower approximations, relating to any 
subset UX ⊆ . Boundary, positive and negative regions are 
described as below. 

( ) ( ) ( )XBXBXBND −=           (22) 

( ) ( )XBXPOS =                                       (23) 

( ) ( )XBUXNEG −=                                       (24) 

 A member of the negative region ( )XNEG  does not belong 

to X . A member of the positive region ( )XPOS  belongs 

to X , and only one member of the boundary region 

( )XBND  belongs to X  [12]. These regions are shown in 

the Fig. 2.  
 
 

 

Figure 2.  The negative, positive and the boundary regions of a rough set  

A rough set can be characterized intuitively with the following 
coefficient: 

( ) ( )
( )

( )( )
( )( )XBcard

XBcard

XB

XB
XB ==α           (25) 

Here the coefficient ( )XBα  is called the accuracy of the 

approach and the number of members of the set ( )XB  is 

expressed as ( )XB  and the number of members of the set 

( )XB  is expressed as ( )XB . 

 It is obvious that ( ) 10 ≤≤ XBα . ( ( ) [ ]1,0∈XBα )  

If ( ) 1=XBα  then X  is called certain relating toB , 

otherwise if ( ) 1<XBα  then X , is called rough relating 

to B .  
 
 

VI.  RULE INDUCTION FROM COMPLETE DECISION TABLE  

A decision table is an information system { }( )dAUT ∪= ,  

such that each Aa∈  is a condition attribute and Ad ∉  is a 

decision attribute. Let dV  be the value set 

{ }uddd .,,........., 21  of the decision attributed . For each 

value di Vd ∈ , we obtain a decision class 

( ){ }ii dxdUxU =∈= |  where 

dVUUUU ∪∪∪= ..........21  (i.e., dVu = ) and for 

every iUyx ∈, , ( ) ( )ydxd = .  

The B -positive region of d  is defined 

by ( ) ( ) ( ) ( )
dVB UBUBUBdPOS ∪∪∪= ..........21 .  

A subset B  of A  is a relative reduct of T  if 

( ) ( )dPOSdPOS AB =  and there is no subset B′  of B  

with ( ) ( )dPOSdPOS AB =′ . 

We define a formula 

( ) ( ) ( )nn vavava =∧∧=∧= ..........2211  in T  

(denoting the condition of a rule) where Aa j ∈  and 

jaj Vv ∈  ( )nj ≤≤1 . The semantics of the formula inT  is 

defined by 

( ) ( ) ( )[ ]
( ) ( ) ( ){ }nn

Tnn

vxavxavxaUx

vavava

===∈

==∧∧=∧=

.,,.........,|

..........

2211

2211
  

Let ϕ  be a formula 

( ) ( ) ( )nn vavava =∧∧=∧= ..........2211  in T .  

A decision rule for T  is of the form ( )idd =→ϕ , and it is 

true if[ ] [ ] ( )iTiT
Udd ==⊆ϕ . 

The accuracy and coverage of a decision rule r  of the form 

( )idd =→ϕ  are respectively defined as follows: 

 



accuracy( )
[ ]

[ ]
T

Ti

i

U
UrT

ϕ

ϕ∩
=,,           (26) 

 

coverage ( )
[ ]
i

Ti

i U

U
UrT

ϕ∩
=,,           (27) 

 

In the evaluations iU  is the number of objects in a decision 

class iU  and [ ]
T

ϕ  is the number of objects in the universe 

dVUUUU ∪∪∪= ..........21  that satisfy condition ϕ  of 

rule r . Therefore, [ ]
TiU ϕ∩  is the number of objects 

satisfying the condition ϕ  restricted to a decision 

class iU [13]. 
In this study, different kinds of rules are generated based on 
the characteristics from the decision table using ROSE2 
(Rough Set Data Explorer) software.  
ROSE2 is a modular software system implementing basic 
elements of the rough set theory and rule discovery 
techniques. It has been created at the laboratory of Intelligent 
Decision Support Systems of the Institute of Computing 
Science in Poznan.  
ROSE2 software system contains several tools for rough set 
based knowledge discovery. These tools can be listed as below 
(http://idss.cs.put.poznan.pl/site/rose.html): 

• data preprocessing, including discretization of 
numerical attributes,  

• performing a standard and an extended rough set 
based analysis of data,  

• search of a core and reducts of attributes permitting 
data reduction,  

• inducing sets of decision rules from rough 
approximations of decision classes,  

• evaluating sets of rules in classification experiments,  

• using sets of decision rules as classifiers. 

All computations are based on rough set fundamentals 
introduced by Pawlak [4]. To obtain the decision rules from 
the decision table, the algorithms LEM2 [14, 15, 16], Explore 
[17] and MODLEM [18] are utilized. LEM2, Explore and 
MODLEM algorithms for rule induction which are used in this 
study will be defined briefly as follows. These algorithms are 
strong for both complete and incomplete decision tables 
induction.  
 
 
 
 

A     LEM2 Algorithm 
 
LERS [14] (LEarning from examples using Rough Set) is a 
rule induction algorithm that uses rough set theory to handle 
inconsistent data set, LERS computes the lower approximation 
and the upper approximation for each decision concept. LEM2 
algorithm of LERS induces a set of certain rules from the 
lower approximation, and a set of possible rules from the 
upper approximation. The procedure for inducing the rules is 
the same in both cases [19]. This algorithm follows a classical 
greedy scheme which produces a local covering of each 
decision concept, i.e., it covers all examples from the given 
approximation using a minimal set of rules [20]. 
 
B     MODLEM Algorithm 
 
Preliminary discretization of numerical attributes is not 
required by MODLEM. The algorithm MODLEM handles 
these attributes during rule induction, when elementary 
conditions of a rule are created. MODLEM algorithm has two 
version called MODLEM-Entropy and MODLEM –Laplace. 
A similar idea of processing numerical data is also considered 
in other learning systems, i.e., C4.5 [21] performs 
discretization and tree induction at the same time. In general, 
MODLEM algorithm is analogous to LEM2. MODLEM also 
uses rough set theory to handle inconsistent examples and 
computes a single local covering for each approximation of 
the concept [19]. The search space for MODLEM is bigger 
than the search space for original LEM2, which generates 
rules from already discretized attributes. Consequently, rule 
sets induced by MODLEM are much simpler and stronger.    
 
C     Explore Algorithm 
 
Explore is a procedure that extracts from data all decision 
rules that satisfy requirements, regarding i.e., strength, level of 
discrimination, length of rules, as well as conditions on the 
syntax of rules. It may also be adapted to handle inconsistent 
examples either by using rough set approach or by tuning a 
proper value of the discrimination level. Induction of rules is 
performed by exploring the rule space imposing restrictions 
reflecting these requirements. Exploration of the rule space is 
performed using a procedure which is repeated for each 
concept to be described. Each concept may represent a class of 
examples or one of its rough approximations in case of 
inconsistent examples. The main part of the algorithm is based 
on a breadth-first exploration which amounts to generating 
rules of increasing size, starting from one-condition rules. 
Exploration of a specific branch is stopped as soon as a rule 
satisfying the requirements is obtained or a stopping condition, 
reflecting the impossibility to fulfill the requirements, is met 
[20]. 
 
 
 
 
 



D     Example 
 
Let us assume that we have the following T complete decision 
table in Table I. In this table, U  represents the universe, A  
represents the attributes, d  represents the decision classes, 
and V  represents the values that each attribute has.  

{ }121110987654321 ,,,,,,,,,,, xxxxxxxxxxxxU =  

{ }4321 ,,, aaaaA = , { }3,2,1=d  , { }3,2,11 =V , 

{ }3,12 =V , { }4,3,2,13 =V , { }5,4,2,14 =V  

TABLE I.  A COMPLETE DECISION TABLE 

 

U  1a  2a  3a  4a  d  

1x  1 3 2 5 1 

2x  2 1 3 4 2 

3x  1 3 2 5 1 

4x  1 1 2 2 1 

5x  3 3 4 1 2 

6x  3 3 1 2 3 

7x  2 1 3 4 2 

8x  3 3 4 1 2 

9x  1 3 2 5 1 

10x  1 3 2 5 2 

11x  3 3 1 2 3 

12x  2 1 3 4 3 

 
Exact and approximate rules generated using algorithms 
LEM2, Explore and MODLEM (MODLEM-Entropy and 
MODLEM-Laplace) from the decision tables are shown below 
with IF-THEN. 
 
rule 1: IF (a2 = 1) AND (a4 = 2) THEN (d = 1)  
rule 2: IF (a3 = 4) THEN (d = 2)  
rule 3: IF (a3 = 1) THEN (d = 3)  
rule 4: IF (a4 = 5) THEN (d = 1) OR (d = 2)  
rule 5: IF (a1 = 2) THEN (d = 2) OR (d = 3)  
rule 6: IF (a3 = 4) THEN (d = 2)  
rule 7: IF (a4 = 1) THEN (d = 2)  
rule 8: IF (a3 = 1) THEN (d = 3) 
rule 9: IF (a1 = 3) AND (a4 = 2) THEN (d = 3)  
rule 10: IF (a2 = 3) AND (a4 = 2) THEN (d = 3)  

rule 11: IF (a1 < 1.5) AND (a2 < 2) THEN (d = 1) 
rule 12: IF (a3 >= 3.5) THEN (d = 2) 
rule 13: IF (a3 < 1.5) THEN (d = 3)  
rule 14: IF (a4 >= 4.5) THEN (d = 1) OR (d = 2)  
rule 15: IF (a1 >= 1.5) AND (a2 < 2) THEN (d = 2) OR (d =3) 
rule 16: IF (a1 < 1.5) AND (a2 < 2) THEN (d = 1) 
rule 17: IF (a3 >= 3.5) THEN (d = 2) 
rule 18: IF (a3 < 1.5) THEN (d = 3) 
rule 19: IF (a4 >= 4.5) THEN (d = 1) OR (d = 2) 
rule 20: IF (a1 >= 1.5) AND (a2 < 2) THEN (d = 2) OR (d =3) 
 
Among these  rules; Rule 1-Rule 5 are produced by LEM2, 
Rule 6-Rule 10 are produced by Explore algorithms, Rule 11-
Rule 16 are produced by MODLEM-Entropy and finally Rule 
16- Rule 20 are produced by MODLEM-Laplace algorithms.  
 

VII.  CONCLUSION 

In parallel with the rapid developments in both computer 
hardware and software industries, the increase in the storage 
capacities of huge databases, the data mining and the usage of 
the useful patterns that are residing in the databases, became a 
very important research area. To discover the rules or 
interesting and useful patterns among these stored data, the 
data mining methods are used. Rules are one of the widely 
used techniques to present the obtained information. A rule 
defines the relation between the properties and gives a 
comprehensible interpretation. If the data is incomplete or 
inaccurate, the results extracted from the database during the 
data mining phase would be inconsistent and meaningless. 
Rough set theory is a new mathematical approach used in the 
intelligent data analysis and data mining if data is uncertain or 
incomplete.  
In this study, the mathematical principles of the rough set 
theory are discussed and an application about rule discovery 
using rough set theory from a decision table is presented. 
LEM2, Explore and MODLEM algorithms in the software 
ROSE2 are used to discover these rules. 
MODLEM algorithm has two version called MODLEM-
Entropy and MODLEM –Laplace. In the given application, 
there are twelve elements in the universe. Considering that 
much more data exist in the real life problems, it can be seen 
that how important this method is to discover the interesting 
patterns.  
Also, these algorithms have different approaches to the 
decision rules that are produced from decision tables and have 
strong characteristics comparing to each other. 
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