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ABSTRACT – The problem of comparing 

hierarchical and nested intelligence factor models is 

under study. These models were developed according 

to existing theories of intelligence and enable to 
investigate latent factors of a general intelligence as 

well as factors of a verbal and nonverbal intelligence 

influences on observed parameters measured by the 

Wechsler intelligence test. Presented is a new 

technique for estimating goodness-of-fit measure in 

case of unrestricted factor models, which is based on 

the capabilities of self-organizing feature maps 

(Kohonen networks). This technique makes it 

possible to avoid tight restrictions imposed on 

observed data and factor model structure, which are 

inherent for the traditional factor model identification 

procedure. The procedure of estimating model 
components’ statistical significance via comparison 

of goodness-of-fit measures for saturated and reduced 

models is also under consideration. 
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I. INTRODUCTION 

The concept of intelligence is determined by quite 

diverse, but in general refers to individual 

characteristics, attributable to the cognitive sphere, 
above all - to thinking, memory, perception, 

attention, etc. Is intelligence a single entity or 

whether it consists of individual abilities of the 

particular potency? Could you define intelligence as a 

set of such potentials, the number and value of which 

depends on confronting the individual tasks of 

different difficulty levels? There were various 

theories formulated trying to answer these questions, 

among which we have a structural modeling 

approach. 

II. FACTOR MODELS OF INTELLIGENCE 

The first attempt to analyze the structure 

properties of intelligence was made by Charles 

Spearman in 1904. Spearman found that 

schoolchildren's grades across seemingly unrelated 

subjects were positively correlated, and proposed that 

these correlations reflect the influence of a dominant 

factor, which he termed as g for "general" 

intelligence or ability. He developed a model in 

which all variability in intelligence test scores are 

explained by two factors: the first factor which is 

specific to an individual mental task: the individual 

abilities that would make a person more skilled at a 

specific cognitive task; and the second factor which is 
a general factor g that governs performance on all 

cognitive tasks. [9] 

Also there is another classical factor model of 

intelligence which was created by L. Thurstone. 

Using his new approach to factor analysis, Thurstone 

found that intelligent behavior does not arise from a 

general factor, but rather emerges from some 

independent factors that he called as primary abilities. 

[10]  

Thurstone's contribution to the development of 

factor analysis techniques was proved invaluable in 

establishing and verifying later psychometric factor 
structures, and has influenced the hierarchical models 

of intelligence which are used in intelligence tests 

such as WAIS and the modern Stanford-Binet IQ test.  

The importance of a comprehensive analysis of 

different intelligence models and topicality of the 

best factor model structure identification is connected 

with increasing growth of interest to the problem of 

revealing the intelligence structure and caused by the 

emergence of new theories of intelligence and 

creation of new test methods that rely on it. [1, 3, 8] 

An important task of comparing the hierarchical 
(Thurstone’s model) and nested (Spearman’s model) 

models of intelligence using results of twins’ 

intellectual abilities study was posed by the professor 

D. Ushakov. The study involved 103 pairs of 

monozygotic (MZ) twins and 99 pairs of dizygotic 

(DZ) twins.  

We constructed two factor models of intelligence 

according to the Thurstone’s (see Figure 1) and 

Spearman’s approach (see Figure 2). The results of 

Wechsler’s test used as the observed parameters 

denoted as S1 – S11. The test includes 11 subtests that 
cover the verbal and nonverbal aspects of 

intelligence.  

These models have the following notation: factor 

G is a general factor, factor V is a factor of verbal 

intelligence, factor N is a non-verbal intelligence 

factor, and factors E1 – E11 are measurement errors. 

We assessed hierarchical and nested models’ 

goodness-of-fit measures using both average and 

difference values of the initial subtests results within 

twins’ pair.  

By using the difference between subtests results  



Figure 1. Nested intelligence factor model. 

 

Figure 2. Hierarchical intelligence factor model. 

 

 we are trying to exclude a common genetic “portion 

of intelligence” while using of subtests averages 

obtained in the pair, guarantees that the influence of 

environment and genetic is not excluded.  
Both nested and hierarchical complete models (as 

they are shown in Figures 1 and 2) were compared 

with their simplified variants without the factor G. 

Analysis scheme is shown in Figure 3. Comparison 

of the complete model and simplified performed for 
both types of models: hierarchical and nested, using 

the difference and average between subtests results of 

monozygotic (MZ) and dizygotic (DZ) twins. 

Estimating of each model’s goodness-of-fit 

measure is carried out by a new statistical method, 

which is a new technique for estimating a goodness-

of-fit measure in case of unrestricted factor models, 

which is based on the capabilities of self-organizing 

feature maps and expands the approach described in 

[4]. 
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Figure 3. Scheme to assess the adequacy of the factor models. 
 



III. A NEW TECHNIQUE FOR ESTIMATING A 

GOODNESS-OF-FIT MEASURE 

For each of the above-stated models we compose 

a corresponding overdetermined set of equations 

which can be expressed in the following way: 
F(x)=b, 

where F(x) -  n-dimensional non-linear operator 

applied to m-dimensional vector x of  unknown free 

model parameters of interest, which n components 

are expected analytic expressions of variances and 

covariances for observed variables via m free 

parameters of a factor model under consideration; b - 

column nx1 vector of  variance and covariance 

sample estimates, which are determined using 

observation results.  

The vector =F(x)–b represents a residual of the 

pseudosolution x, where  
 

||bF(x)||min||b)F(x||
Xx

*




,  

||.|| - vector Euclidean norm, X – admitted region for 

x.  

To get this pseudosolution, any available 
numerical non-linear multivariate local optimization 

procedure with a minimization criterion represented 

by the residual Euclidean norm can be used. Gradient 

techniques are acceptable for this purpose. In 

particular, the authors employed a procedure called 

the Generalized Reduced Gradient. 

To examine for the adequacy of the calculated 

pseudosolution to observations further development 

of the above-stated technique based on both the 

SOFM capabilities and the Monte Carlo method is 

suggested here. Its framework is shown in Figure 4. 

As before, calculation of goodness-of-fit measure is 

based on comparison of the pseudosolution residual 

vector =F(x)–b and random samples of residual 

vectors r= F(x)–F(xr), where xr  is a generated 
random test vector belonging to a given 

neighborhood of the pseudosolution x.  
Any arbitrary distribution may be assigned to 

vectors xr, nevertheless for practical purposes it is 

convenient to produce them normally distributed, 

with the standard deviation being varied. If 

necessary, given averaged percentage of random 

vector components are placed beyond the given 

neighborhood intervals. Random samples of residual 

vectors r are used to train SOFM of proper 
dimension and, as a result, to obtain samples of 

Euclidean distances between residual vectors r used 
as network input cases and the centers of SOFM 

"winning" units. These samples are close to normally 

distributed ones owing to the afore-cited reasons. 

Estimation of their means and variances identifies the 

given distributions and yields the opportunity to 

calculate the probability of exceeding the distance 

between the pseudosolution residual vector  and its 
corresponding “winning” unit center. This probability 

is considered as a factor model goodness-of-fit 

measure.  

To get information about possible deviations of 

identified parameters from their estimations obtained 

with the aid of a given factor model, series of 
samples with both given different standard deviations 

of random components and their changing averaged 

percentages of going beyond the given neighborhood 

Figure 4. Calculation of arbitrary factor model goodness-of-fit measure 

with the aid of the self-organizing feature maps and the Monte Carlo method. 
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intervals are generated for SOFM training. For ease 

of analysis standard deviation of each test vector 

component is assumed to be equal to a certain 
constant percentage of the corresponding component 

mean value. Comparison of the above-stated SOFM 

distance distributions for different standard 

deviations and percentages makes it possible to 

reveal the maximum likelihood combination of the 

obtained pseudosolution precision presented by the 

estimated standard deviation and the component-wise 

structure of significant deviations for the 

pseudosolution components.  

Geometric illustration clarifying the above-stated 

procedure, which is non-linear in general case, is 

given in Figure 5. 
The suggested approach allows making 

conclusions on statistical significance of differences 

between two most probable factor model patterns 

under study using certain probability tests. Specific 

parameters of these model patterns can be identified 

by the foregoing technique. To compare patterns one 

should consider their maximum likelihood ratios 

r=/m, where  is the most probable standard 
deviation for generated normally distributed values of 

free model parameters and m – corresponding 

distribution mean value. Since standard deviations of 

these generated values are assumed here to be equal 

to a certain constant percentage of relevant mean 
values, these ratios are kept constant for all model 

pattern parameters, but can differ for various patterns 

which allow, in general case, diverse averaged 

percentages going beyond the given parameter 

neighborhood intervals.  

Let the ratios of compared patterns equal to  

r1=1/m1 and r2=2/m2, correspondingly, and r1≤r2. 
Comparison is carried out for the same relative 

standard deviation *=r1= r2m2 when the mean value 
m1 equals to 1. In this case probability of the obtained 

deviation of reduced mean m2=r1/r2 is estimated, viz.: 

probability P(m2≤X≤1)=Φ(1)-Φ(m2) of being within 
the limits [m2;m1=1] is calculated for random 

quantity X, where Φ is the normal distribution 

function with a mean of 1 and a standard deviation of 

*. If this probability is greater than the given 
significance level that is usually equal to 0.05, the 

pattern difference is recognized as significant, 

otherwise it is considered as negligible. 

The goodness-of-fit measures under consideration 

give the opportunity to determine the sample sizes 

required for testing hypotheses of equality of the 

distance between the pseudosolution residual vector  
and its corresponding SOFM “winning” unit center to 

the certain value with both the given significance 

level and given test power. A formula of interest is 

derived from the comparison of corresponding 
acceptance region limits[1]:  

 
 
 
 

2

1-α/2 1-β

norm

z + z
N =

d
, 

where 
1-α/2

z  and 1-
z  are standard normal 

distribution quantiles of orders 1-α/2 and 1-β, 

correspondingly; α is significance level; β is 

probability of type 2 error; dnorm is the ratio of 

deflection of true distance expectation from the tested 

certain value to the standard deviation of distance 
distribution.  

b 

transform y=F(x) 

y*3 

y*2 

y*1 

y3 

y2 

y1 

0 

0 x*1 

x*2 

x1 

x2 
pseudosolution x 

admitted region for 

solutions in  the 

neighborhood of 

pseudosolution x 
 

image of pseudosolution x 

distance from vector b to 

the nearest cluster center 

Figure 5. Geometric interpretation of the admitted solution region non-linear transform. 
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Figure 6. Result of comparison of factor models. 
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The presented techniques were software 
implemented on the base of the LabVIEW graphical 

programming environment [6]. The work of self-

organizing feature maps was simulated with the aid 

of the STATISTICA Neural Networks software 

package [2, 5].  

IV. MAIN RESULTS AND CONCLUSIONS 

The analysis expose that the hierarchical and 

nested models showed its adequacy for all 

investigated data from dizygotic and monozygotic 

twins with the differences and the average values of 

the subtests in the pair. The significance of factor G 

was confirmed in the comparison of full and 
simplified models. 

Developed is a new technology estimated for 

factor models which advanced are: 

− No need to test multivariate normalcy of 

distributions of either observed variables or 

residual vector components 

− Higher reliability of obtained goodness-of-fit 

measures because of unrestrictedness of 

generated random samples of the 

pseudosolution components and the 

following unlimited goodness-of-fit 
estimation accuracy. 

Figure 6 shows the comparison of two types of 

models between them, where arrows indicate the best 

models, which show the best match to the observed 

parameters. Comparison of models using the average 

in dizygotic twin’s pair revealed no significant 

differences between the models. 

The nested model better describes the observed 

parameters by using the average values of the 

subtests in the twin’s pair. This type of model 

considers the influence of environment and genetics. 

The hierarchical model is more responsive to the 
influence of environment than genetics. 
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