
Interactive Computing Framework for Engineering

Applications

Jovana Knežević, Jérôme Frisch, Ralf-Peter Mundani, Ernst Rank

Lehrstuhl für Computation in Engineering

Technische Universität München

Arcisstraße 21, 80333 München, Germany

knezevic@bv.tum.de

Abstract—In this paper, we introduce an integration framework

for engineering applications that supports distributed

computations as well as visualisation on-the-fly in order to reduce

latency and enable a high degree of interactivity with only minor

code alterations involved. Moreover, we tackle the problem of

long communication delays in the case of huge data advent,

which occur due to rigid coupling of simulation back-ends with

visualisation front-ends and handicap a user in exploring
intuitively the relation of cause and effect.

Keywords-interactive computing; computational steering

environment (CSE), multithreading, thread synchronisation

 INTRODUCTION

Interactive computing, in general, refers to the real-time
interplay of a user with a program during the program runtime
in order to estimate its actual state or tendency and to fetch an
opportunity to react on variety of changes. Within numerical
simulation experiments, specifically, this implies that the
geometry of the simulated scene can be modified interactively
altogether with boundary conditions or a distinct feature of the
application, thus, the user can gain ―insight concerning
parameters, algorithmic behaviour, and optimisation
potentials― [1]. The commonly agreed central features of
interactive computing in this case are: on the front end, a
sophisticated user interface and the visualisation of results on
demand and, on the back-end, a separated steerable, often time-
and memory-consuming simulation running on a high-
performance cluster (see Fig. 1).

Even though powerful tools such as CSE [2], CUMULVS
[3], SCIRun [4], Uintah [5], or RealityGrid [6] allow users to

Figure 1. At the development front-end, the user guides the

simulation in building a solution to his problem via graphical user interface,

while on the back-end, an often time- and memory-consuming program is
being executed.

embed their simulation codes as a module for an interactive
steering without the necessity for their own expertise in
algorithms and data structures, high-performance computing,
and visualisation, these tools are limited in their possible
applications and mostly entail heavy code changes in order to
integrate the existing code [7].

A. The State of the Art

CSE is a computational steering environment whose kernel
is designed to be very simple, flexible, minimalistic, and all
higher level functionality is pushed into the modular
components, so-called satellites. It is based on the idea of the
data manager informing all the satellites of changes made in
the data and an interactive graphics editing tool allowing users
to bind data variables to user interface elements.

CUMULVS is a middle layer between the application
program and the visualisation and steering front-end. It
encompasses all the connection and data protocols needed to
dynamically attach multiple visualisation and steering front-
ends to a running application. The user has to declare in the
application which parameters are allowed to be modified or
steered during the computation.

In the RealityGrid project, an application is structured into
a client, a simulation, and a visualisation unit communicating
via calls to the steering library functions. It involves insertion
of check- and break-points at fixed places in the code where
modified parameters are obtained and the simulation is to be
restarted, respectively.

In the SCIRun problem solving environment (PSE) for
modelling, simulation, and visualisation of scientific problems,
a user may, on the one hand, smoothly construct a network of
required modules via a visual programming interface, while, on
the other hand, changes with a deeper impact on the simulation
require an automatic cancellation and restart of the simulation.
In addition, this PSE has typically been adopted to support pure
thread-based parallel simulations, consequently limiting the
scale of the scientific computation that can be tackled to the
shared memory environments.

Uintah is a component-based visual PSE that builds upon
the best features of the SCIRun PSE, being, contrarily,

mailto:knezevic@bv.tum.de

designed to specifically address the problems of massively
parallel computation on terascale computing platforms.

Within the Chair for Computation in Engineering at
Technische Universität München, in the previous years, several
successful Computational Steering research projects involving
long-term cooperation with industry partners took place.
Valuable experience has been gained and advanced state
reached in efforts to reduce the work required to extend an
existing application code for steering. Performance
investigations of several interactive applications, in regard to
responsiveness to steering, have been done, as well as
identifications of factors limiting performance. The focus at
this time has been set to interactive computational fluid
dynamics (CFD), based on the Lattice-Boltzmann method,
including Heating Ventilation Air-Conditioning (HVAC)
system simulator [8], online-CFD simulation of turbulent
indoor flow in CAD-generated virtual rooms [9], interactive
thermal comfort assessment [10], etc. However, the developed
concepts have been primarily adopted to this limited number of
application scenarios, thus, they allow for further
investigations so as to become more generic.

THE IDEA OF THE PLATFORM

In the interest of widening the scope of the applications of
the framework, our essential aim is an instant response of any
simulation back-end to the changes made by the user. So as to
achieve it, the regular course of the simulation coupled to our
framework is being interrupted, using software equivalent of
hardware interrupts, i.e. signals, in small, application-
compatible, cyclic intervals, followed subsequently by a check
for updates. If, meanwhile, there has been no user interaction,
the control is given back to the simulation, which continues
from the state saved at the previous interrupt-point either until
the results of the computation are complete and should be sent
to the user, or until the end of yet another interrupt interval.

Otherwise, the new data is received and simulation state
variables are manipulated in order to make the computation
stop and then start anew according to the updated settings
(boundary conditions, simulation parameters, etc.).

 As elaborated in [7], to guarantee the correct execution of a
program, one should use certain type qualifiers for the
variables which are subjects to sudden change or objects to
interrupts. First of all, one should ensure that certain types of
objects which are being modified both in the signal handler and
the main computation are updated in an non-interruptible way.
Second of all, if the value in the signal handler is changed, one
should take care that, due to compiler optimisations, the old
value in the register is not used again instead of reading the
updated value from the memory (which might result in
undesired behaviour of the program).

Moreover, it is the responsibility of a user himself to
instruct the simulation program how the received data should
be matched to the simulation-specific requisites so as to reflect
properly the outcome of the modifications.

Referring to the aforementioned idea, a relevant remark is
that, under any circumstances, when the control of execution is
given back to the main computation, it is obliged to continue at
the point where it has previously been interrupted. However,

taking the pseudo code of an iterative solver for a system of
linear equations (Figure 2) as an example, this unconditionally

Figure 2. Pseudo code: an example of an iterative solver

happens only until the end of the current, most-inner loop
iteration, where the earliest opportunity is used to compare the
values of the simulation state variables and, if result of the
comparison indicates so, consequently exit all the loops (i.e.
starting with most-inner one and finishing with the most-outer
one). This exactly means starting computation over again.

Finally, with either one or several number of iterations
being finished without an interrupt, new results are handed on
to the user process for visualisation. One more time it is user‘s
responsibility to prescribe to the front-end process how to
interpret the received data so that it can be coherently
visualised.

Due to the complexity requirements and amount of data in
numerical simulations nowadays, in order to fully exploit the
general availability and increasing CPU power of high-
performance computers, sophisticated parallel programming
methods are inclined. The design of our framework, therefore,
takes into consideration and supports different parallel
paradigms, which results in an extra effort to ensure correct
program execution and avoid synchronisation problems when
using threads, as explained in the following subsection.

Multithreading Parallelisation Scenario

In the case of pure multithreading (with OpenMP / POSIX
threads, e.g.) used for the computations on the simulation side,
the idea is that as soon as a random thread is interrupted at the
expiration of the user-specified interval, it checks, via the
functionality of the Message Passing Interface (MPI), if any
information regarding the user activity is available. If the
aforesaid probing of the user‘s message indicates that any
change has been made, the receiving thread instantly obtains
information about it. Furthermore, all the other threads become
aware that their computations should be started over again and
proceed in the way in which clean termination of the parallel
region is guaranteed, as described in more detail in [7].

„Hybrid“ Parallelisation Scenario

In the case of hybrid parallelisation of a simulation (i.e.
MPI and OpenMP), a random thread in each active process is
being interrupted, hence, fetches an opportunity to check for
the updates [7]. The difference in comparison to the exclusively
multithreaded parallelisation is that now all the processes have
to be explicitly notified about the changes performed by a user,
which, matched up to pure multithreading, also involves
additional communication overheads. If one master process,
which is the direct interface of the user‘s process to the
computing-nodes, i.e. slaves, is informing all of them about

Iterative_solver() {
for (t ← T0 to TN) do # iterations over time
iterations over a domain
 for (idx1 ← X10 to X1N)
 for (idx2 ← X20 to X2N)

Process(data[idx1][idx2])
}

the user interaction, this may result in the master process
becoming a bottleneck.

Figure 3. User process sends the data about the update to solely

master process on the simulation side; master process checks for the updates

in small fixed intervals and signal is transferred from master to all the slaves

via communication hierarchy. All the slaves then do their own checks in their

own fixed intervals.

Therefore, a hierarchical non-blocking broadcast algorithm
for transferring the signal to all computing nodes has been
implemented.

What is more, in efforts to interrupt one thread per process,
an inevitable trade-off between ensuring a minimal number of
checks per process and allowing for receiving the data
promptly has to be faced, thus, as a next step, an optimal
interval between the interrupts on different levels of the
communication hierarchy is going to be estimated. In addition,
a possibility of distributing the tasks among several user
processes, each in charge of a certain group of simulation
processes will be examined.

 A TEST CASE

To evaluate our concepts, we have coupled our framework,
on one side, to a C++ 2D simulation of heat conduction
(described by Laplace heat equation) in a given region over
time. Solutions of the heat equation are characterised by a
gradual smoothing of the initial temperature distribution by the
heat flow from warmer to colder areas of a domain. This means
that different states and starting conditions will tend toward the
same stable equilibrium. After discretising using a Finite
Difference scheme for updating the values, we come up with a
five-point stencil. The system of linear equations is then solved
using the Gauss-Seidel iterative method.

On the other side, we have coupled our framework to a
graphical user interface using the wxWidgets library. The
temperature is represented along the z-axes, pointing upward,
hence, showing the variations of the temperature in the
corresponding 2D domain. The simulation and the visualisation
are implemented as separate MPI processes.

B. Initial Settings

The very first settings, which include grid generation, error
tolerance, and maximal number of iterations for the simulation,
are specified by a user via graphical user interface (Figure 4a).
Immediately after defining these parameters, one can define the
boundaries of the domain and set points with certain fixed
values of the temperature, so-called pillars (Figure 4b).

C. User Interaction

When it comes to interplay with the program during the
simulation, there are a few possibilities available – one can
interactively add, delete or move pillars, add, delete, or move
boundary points, change maximal possible number of iterations
and error tolerance.

However, every time the change is performed by a user and
the simulation becomes aware of it, the computation is
restarted. Thus, what is unfortunately not feasible on a
300×300 grid, due to the short intervals between two restarts in
the case of ―hand over fist‖ user interaction, is an instant
estimation of the equilibrium state for points of the domain far
away from pillars, as shown in Figure 5b. In this case, we profit
from the hierarchical approach, introduced already in the next
subsection.

D. Hierarchical Approach

Our hierarchical approach is based on the usage of several
different grids depending on the frequency of the user
interaction. The principle on the example of the test case is as
follows: At the beginning, the initial grid is used for the
computation. In the case that some user interaction occurs, the
simulation process recognises it, and, as soon as it restarts the
computation with the updated settings, the coarser grids are
used, the level of coarseness being determined based on the
frequency of user‘s activity.

Munich Center of Advanced Computing (MAC), TUM

Figure 4. a) Initial settings; b) simulation running with initial border and pillar settings on a grid 300×300, with error tolerance e-05 and maximal

number of iterations set to 10,000.

In this particular test case, we are using three different
grids. esides the initial 3 3 grid Figure a , the four
times smaller, intermediate one Figure b , is used in the case
of lower pace of interactions adding/deleting pillars or
boundary points, e.g. Finally, the coarsest, 75×75 (Figure 6c) is
brought into play for the occasion of the very high frequency of
moving boundary points or pillars over the domain.

Although at this point, one does not have completely
accurate results, the tendency of the running simulation in the
overall domain can be easily and instantly observed,
independently on the number and rate of changes applied. At
last, when the current settings satisfy user‘s requirements, no
more interaction is involved and the stage of calculating more
accurate results is reached again.

Namely, as soon as the simulation at the back-end realises
that there has been no front-end intervention for a user-
predefined time slot, it stops, switches back to one of the finer
grids, depending on the slot, and starts a new computation.

In this case, the results of the previous computing on the
coarser grid are discarded. To speed up reaching the heat
equilibrium on finer grids, a multi-level method, where the
previous precious results are reused, is exploited, as
commented on in more detail in the Subsection III.D.

Referring to what has already been said in this section, it is
important to point out that the hierarchical approach we have in
mind for the future test cases is not limited to recursive
coarsening the grid. On the contrary, one can analogously

utilize other simulation-specific hierarchies (different
polynomial degrees of basis functions in Finite Element
scheme approximation, e.g.) and any user of the framework can,
if needed, easily adopt it to his individual requirements.

E. Multi-level Approach

In order to avoid wasting the computational cycles within
the runtime while the user is interacting, we employ a multi-
level algorithm, i.e. the results of the computation on the
coarsest grid are not disposed of when switching to the finer
one. Namely, our concept already involves a hierarchy of
discretisations as in multigrid algorithm and we profit from the
analogous idea. Nevertheless, instead of accelerating the
convergence of a basic iterative method by global correction
from time to time, accomplished by solving a coarser problem,
i.e. descending to the coarser grids and calculating an error, as
in multigrid algorithm, our scheme starts with the solution on
the coarsest grid and only uses the result we gain as an initial
guess of a result on a finer one (see Fig. 7).

As expected, the results show clearly that the speed of
convergence is significantly higher with the new approach.

For the examples of the settings we tested including an
initial 300×300 grid and several different pillar Pi (xi, yi) and
boundary Bj (xj, yj) points with corresponding ordered pairs (xk,
yk) of x- and y-axes indices respectively and the error tolerance
set to e-05, the number of iterations needed for convergence
both on the intermediate and the initial grid can be significantly
improved.

Figure 6. Switching from the finest grid (grid 1: 300x300) by adding/deleting pillars/boundaries to the intermediate (grid 2: 150x150)

and, finally, when moving pillars/boundaries, to the coarsest one (grid 3: 75x75) and reversely to the initial grid when there is an interval without
any interaction.

Figure 5. a) An initial scenario; b) moving pillars/boundaries rapidly leads to the continual restart of the computation and inability to estimate the

equilibrium temperature in the region farther away from the pillars, i.e. reached in later iterations.

CODE MODIFICATION REQUIREMENTS

To integrate the framework into any application scenario, a
few modifications of the code have to be made by the user.
Since these modifications are only minor, we list all of them.

First of all, all the variables which will be affected by the
interrupt handler in order to force the restart of the computation
have to be declared both global (Figure 8) and atomicity of
their updates and prevention of the compiler optimisations
which would lead to incorrect value references insured.

Second of all, the integrity of each user-defined ‗atomic‘
sequence of instructions in the simulation code has to be
ensured.

Furthermore, the calls to the provided send and receive
functions which would be interface to our framework have to
be included in the appropriate places in the code.

Nevertheless, the user himself should instruct the
interpretation of the data (in the receive buffers on both
simulation and visualisation side, e.g.).

Finally, he has to enable the regular checks for updates by
including appropriate functions which will examine and change
the default signal (interrupt) action, specifying in the same time
the time interval in which the checks of the simulation
process(es) should be made, as shown in the pseudo code
example.

RESULTS

So as to evaluate potential overheads caused by integration
of our framework, we have done measurements, the average of
several being graphically represented in Figure 9.

First of all, concerning the non-hierarchical approach, what
has been estimated for the cases of single-, two- and four-
threaded simulation and the different initial problem sizes:
1000×1000 (Figure 9a), 500×500 (Figure 9b) and 300×300
(Figure 9c), was the overhead caused only by cyclic
interruption of the simulation every millisecond, realising that
there is no update available, since on the front-end the user is
absolutely not interfering. What is easily observable concerning
the total execution time of the simulation for all the three
aforementioned scenarios is that this kind of overhead, caused,
as a matter of fact, only by raising interrupts which do a
message probing, can be neglected.

In the same three graphs of Figure 9, the runtime
estimations which have been illustrated make it easy to
compare the total execution time of the simulation with or
without updates sent from the front-end. The measurements
have been made for the case of user interaction occurring
repeatedly, every 5 milliseconds. The conclusion is that in the
case of two or four threads for the specified problem sizes one
may only observe very small overheads, while in the case of a
single thread being interrupted and restarting its computation
with aforementioned high, and one must point out very unlikely,
frequency of user interaction, more significant overheads may
be introduced. These results are as expected, concerning the
fact that our tests show that the number of interrupts where
interaction is recognised in the case of a single thread is almost
three times bigger (ca. 2500) than in the case of two and almost
5 times than in the case of 4 threads. Thus, the amount of
computational cycles we discard in this scenario is larger.

Figure 7. Copying the results (temperature values) from the computation on the coarser grid to the initial vectors of the finer

one.

Figure 8. Pseudo code which exemplifies for an

iterative solver the code modifications necessary to integrate the
framework into any application.

Function to override the default interrupt action

My_interrupt_action() {

If(update_available) {
Receive_update()
Manipulate_state_variables()

}
}

declare here state variables global and volatile

main() {

Set_interrupt_action (My_interrupt_action);

 Set_interrupt_timer (INTERVAL) # initiate 1st interrupt

 Iterative_solver () # interrupt can occur here at any point

}

At the point at which we have introduced the hierarchical
approach based on switching between three different grids, so
as to compare the two approaches, we have decided to measure
the execution time in the case of non-periodical user interaction,
being performed as a series of 5 millisecond frequent changes,
with half of a second long intervals in between. The overhead
caused in non-hierarchical scenario for 1000×1000 grid and
one thread, which is most challenging case, for this new
predefined occurrence of user interference is proven to be
similar as in Figure 9a. Nevertheless, the hierarchical approach
outcome show that the aforementioned overhead in the
example with one thread is drastically reduced in comparison
to the non-hierarchical. In other words, the time of executing
the same number of iterations, but now making use of three
different grids is very close to the execution time
without any interrupts, although in some number of iterations,
while the interaction is very frequent, the user would have to

agree with lower accuracy consequences. For two or four
threads, this overhead turns out to be even smaller (Figure 9d).

CONCLUSION

In this paper, we have presented a generic platform which
couples simulation codes and visualisation tools in the way
which allows a user to trigger a simulation during the runtime,
based on a ‗minimal invasion‘ principle, i.e. minor code
changes necessary, and receive prompt feedback. Although the
results for the first test cases look very promising the question
of the signal transfer from a user to all the computing nodes in
the case of massively parallel simulation is a part of the current
research, as well as the integration and testing of the
framework incorporated into several parallel engineering
simulation scenarios. One of our most imminent intentions is
the existing p-FEM code used for computational orthopaedics.

Figure 9. a) b) c) Non-hierarchical approach: estimations of the overall execution time in seconds (vertical axis) for 1, 2 and 4

threads (horizontal axis) doing the computations on grid 1000×1000, 500×500 and 300×300 respectively; square and cross markers

represent respectively the values without and with checks for updates on simulation side, without any user interference actually occurring

and almost completely overlap each other; triangle markers show the values with user interaction rate of 5 milliseconds. d) Hierarchical

approach: measurements of the overall time in seconds (vertical axis) for 1, 2 and 4 threads (horizontal axis) in the case of series of user

interaction occurring every 5 milliseconds, with 0.5 seconds break in between series; triangular and square markers connected with solid

line show overheads of the time in the case of user interaction in comparison to the pure execution time, similarly as in a), while the

markers connected with dotted line show how these overheads are minimized using hierarchical approach, compromising the accuracy.

a) b)

c) d)

ACKNOWLEDGMENT

This work has been financially supported by Munich Centre
of Advanced Computing (MAC) and the International Graduate
School of Science and Engineering (IGSSE) at Technische
Universität München.

REFERENCES

[1] Mulder, J. D., van Wijk, J. J., van Liere, R: A Survey of
Computational Steering Environments. Future Generation Computer Systems

15(1), 1999, pp. 119—129.

[2] CSE – A Modular Architecture for Computational Steering, van
Liere, R., van Wijk, J. J., Virtual Environments and Scientific Visualization

‗9 ., Springer Verlag, Vienna, 199 , pp. 257-266.

[3] CUMULVS – Collaborative User Migration, User Library for
Visualization and Steering, Kohl, J. A., Wilde, T., Bernholdt, D. E., 2006.

[4] SCIRun, www.sci.utah.edu/SCIRunDocs/

[5] Davison de St. Germain, J., McCorquodale, J. , Parker, S.G.,

Johnson, C.R. : Uintah : a massivelly parallel problem solving environment,

The Ninth International Symposium on High-Performance Distributed

Computing, 2000, Proceedings, pp. 33-41.

[6] Reality Grid, www.realitygrid.org

[7] Knežević J., Mundani R.-P., Interactive Computing for
Engineering Applications, 22nd Forum Bauinformatik, 2010., Proceedings.

[8] Borrmann, A.; Wenisch P.; van Treeck, C.: Collaborative HVAC

design using interactive fluid simulations: A geometry-focused platform, 12
th

International Conference of Concurrent Engineering, Fort Worth, TX, USA,

2005, Proceedings.

[9] Wenisch P.; van Treeck, C.; Rank, E., Interactive indoor air flow
analysis using high performance computing and virtual reality techniques,

Roomvent 2004, Coimbra, Portugal, 2004, Proceedings.

[10] Van Treeck, C.; Wenisch P., Borrmann, A.; Pfaffinger, M.; Egger,

M.; Rank, E., Utilizing high performance supercomputing facilities for
interactive thermal comfort assesment, 10

th
 Int. IBPSA Conference Building

Simulation, Bejing, China, 2007, Proceedings.

http://www.sci.utah.edu/SCIRunDocs/

