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Abstract—In this paper, we introduce an integration framework 

for engineering applications that supports distributed 

computations as well as visualisation on-the-fly in order to reduce 

latency and enable a high degree of interactivity with only minor 

code alterations involved. Moreover, we tackle the problem of 

long communication delays in the case of huge data advent, 

which occur due to rigid coupling of simulation back-ends with 

visualisation front-ends and handicap a user in exploring 
intuitively the relation of cause and effect. 

Keywords-interactive computing; computational steering 

environment (CSE),  multithreading, thread synchronisation 

 INTRODUCTION 

Interactive computing, in general, refers to the real-time 
interplay of a user with a program during the program runtime 
in order to estimate its actual state or tendency and to fetch an 
opportunity to react on variety of changes. Within numerical 
simulation experiments, specifically, this implies that the 
geometry of the simulated scene can be modified interactively 
altogether with boundary conditions or a distinct feature of the 
application, thus, the user can gain ―insight concerning 
parameters, algorithmic behaviour, and optimisation 
potentials― [1]. The commonly agreed central features of 
interactive computing in this case are: on the front end,  a 
sophisticated user interface and the visualisation of results on 
demand and, on the back-end, a separated steerable, often time- 
and memory-consuming simulation running on a high-
performance cluster (see Fig. 1). 

Even though powerful tools such as CSE [2], CUMULVS 
[3],  SCIRun [4], Uintah [5], or RealityGrid [6] allow users to  
 

 

 

 

 

 

 

Figure 1.  At the development front-end, the user guides the 

simulation in building a solution to his problem via graphical user interface, 

while on the back-end, an often time- and memory-consuming program is 
being executed. 

embed their simulation codes as a module for an interactive 
steering without the necessity for their own expertise in 
algorithms and data structures, high-performance computing,  
and visualisation, these tools are limited in their possible 
applications and mostly entail heavy code changes in order to 
integrate the existing code [7]. 

A. The State of the Art 

CSE is a computational steering environment whose kernel 
is designed to be very simple, flexible, minimalistic, and all 
higher level functionality is pushed into the modular 
components, so-called satellites. It is based on the idea of the 
data manager informing all the satellites of changes made in 
the data and an interactive graphics editing tool allowing users 
to bind data variables to user interface elements. 

CUMULVS is a middle layer between the application 
program and the visualisation and steering front-end. It 
encompasses all the connection and data protocols needed to 
dynamically attach multiple visualisation and steering front-
ends to a running application. The user has to declare in the 
application which parameters are allowed to be modified or 
steered during the computation. 

In the RealityGrid project, an application is structured into 
a client, a simulation, and a visualisation unit communicating 
via calls to the steering library functions. It involves  insertion 
of check- and break-points at fixed places in the code where 
modified parameters are obtained and the simulation is to be 
restarted, respectively. 

In the SCIRun problem solving environment (PSE) for 
modelling, simulation, and visualisation of scientific problems, 
a user may, on the one hand,  smoothly construct a network of 
required modules via a visual programming interface, while, on 
the other hand, changes with a deeper impact on the simulation 
require an automatic cancellation and restart of the simulation. 
In addition, this PSE has typically been adopted to support pure 
thread-based parallel simulations, consequently limiting the 
scale of the scientific computation that can be tackled to the 
shared memory environments. 

Uintah is a component-based visual PSE that builds upon 
the best features of the SCIRun PSE, being, contrarily, 

 

mailto:knezevic@bv.tum.de


designed to specifically address the problems of massively 
parallel computation on terascale computing platforms. 

Within the Chair for Computation in Engineering at 
Technische Universität München, in the previous years, several 
successful Computational Steering research projects involving 
long-term cooperation with industry partners took place. 
Valuable experience has been gained and advanced state 
reached in efforts to reduce the work required to extend an 
existing application code for steering. Performance 
investigations of several interactive applications, in regard to 
responsiveness to steering, have been done, as well as  
identifications of factors limiting performance. The focus at 
this time has been set to interactive computational fluid 
dynamics (CFD),  based on the Lattice-Boltzmann method, 
including Heating Ventilation Air-Conditioning (HVAC) 
system simulator [8], online-CFD simulation of turbulent 
indoor flow in CAD-generated virtual rooms [9], interactive 
thermal comfort assessment [10], etc.  However, the developed 
concepts have been primarily adopted to this limited number of 
application scenarios, thus, they allow for  further 
investigations so as to become more generic. 

THE IDEA OF THE PLATFORM   

In the interest of widening the scope of the applications of 
the framework, our essential aim is an instant response of any 
simulation back-end to the changes made by the user. So as to 
achieve it, the regular course of the simulation coupled to our 
framework is being interrupted, using software equivalent of 
hardware interrupts, i.e. signals, in small, application-
compatible, cyclic intervals, followed subsequently by a check 
for updates. If, meanwhile, there has been no user interaction, 
the control is given back to the simulation, which continues 
from the state saved at the previous interrupt-point either until 
the results of the computation are complete and should be sent 
to the user, or until the end of yet another interrupt interval. 

Otherwise, the new data is received and simulation state 
variables are manipulated in order to make the computation 
stop and then start anew according to the updated settings 
(boundary conditions, simulation parameters, etc.). 

 As elaborated in [7], to guarantee the correct execution of a 
program, one should use certain type qualifiers for the 
variables which are subjects to sudden change or objects to 
interrupts. First of all, one should ensure that certain types of 
objects which are being modified both in the signal handler and 
the main computation are updated in an non-interruptible way. 
Second of all,  if the value in the signal handler is changed, one 
should take care that, due to compiler optimisations, the old 
value in the register is not used again instead of reading the 
updated value from the memory (which might result in 
undesired behaviour of the program). 

Moreover, it is the responsibility of a user himself to 
instruct the simulation program how the received data should 
be matched to the simulation-specific requisites so as to reflect 
properly the outcome of the modifications. 

Referring to the aforementioned idea, a relevant remark is 
that, under any circumstances, when the control of execution is 
given back to the main computation, it is obliged to continue at 
the point where it has previously been interrupted. However, 

taking the pseudo code of an iterative solver for a system of 
linear equations (Figure 2) as an example, this unconditionally 
 
 

 

 

 

 

Figure 2.  Pseudo code: an example of an iterative solver 

happens only until the end of the current, most-inner loop 
iteration, where the earliest opportunity is used to compare the 
values of the simulation state variables and, if result of the 
comparison indicates so, consequently exit all the loops (i.e. 
starting with most-inner one and finishing with the most-outer 
one). This exactly means starting computation over again. 

Finally, with either one or several number of iterations 
being finished without an interrupt, new results are handed on 
to the user process for visualisation. One more time it is user‘s 
responsibility to prescribe to the front-end process how to 
interpret the received data so that it can be coherently 
visualised. 

Due to the complexity requirements and amount of data in 
numerical simulations nowadays, in order to fully exploit the 
general availability and increasing CPU power of high-
performance computers, sophisticated parallel programming 
methods are inclined. The design of our framework, therefore, 
takes into consideration and supports different parallel 
paradigms, which results in an extra effort to ensure correct 
program execution and avoid synchronisation problems when 
using threads, as explained in the following subsection. 

Multithreading Parallelisation Scenario 

In the case of pure multithreading (with OpenMP / POSIX 
threads, e.g.) used for the computations on the simulation side, 
the idea is that as soon as a random thread is interrupted at the 
expiration of the user-specified interval, it checks, via the 
functionality of the Message Passing Interface (MPI), if any 
information regarding the user activity is available. If the 
aforesaid probing of the user‘s message indicates that any 
change has been made, the receiving thread instantly obtains 
information about it. Furthermore, all the other threads become 
aware that their computations should be started over again and 
proceed in the way in which clean termination of the parallel 
region is guaranteed, as described in more detail in [7]. 

„Hybrid“ Parallelisation Scenario 

In the case of hybrid parallelisation of a simulation (i.e. 
MPI and OpenMP), a random thread in each active process is 
being interrupted, hence, fetches an opportunity to check for 
the updates [7]. The difference in comparison to the exclusively 
multithreaded parallelisation is that now all the processes have 
to be explicitly notified about the changes performed by a user, 
which, matched up to pure multithreading, also involves 
additional communication overheads. If one master process, 
which is the direct interface of the user‘s process to the 
computing-nodes, i.e. slaves, is  informing all of them about 

Iterative_solver() { 
for (t ← T0 to TN) do  # iterations over time 
# iterations over a domain 
 for (idx1 ←  X10 to X1N  )         
   for (idx2  ← X20 to X2N ) 

Process(data[idx1][ idx2]) 
} 

 

 

 



the user interaction, this may result in the master process 
becoming a bottleneck. 

 

 

 

 

 

 

 

 

Figure 3.  User process sends the data about the update to solely 

master process on the simulation side; master process checks for the updates 

in small fixed intervals and signal is transferred from master to all the slaves 

via communication hierarchy. All the slaves then do their own checks in their 

own fixed intervals. 

Therefore, a hierarchical non-blocking  broadcast algorithm 
for transferring the signal to all computing nodes has been 
implemented. 

What is more, in efforts to interrupt one thread per process, 
an inevitable trade-off between ensuring a minimal number of 
checks per process and allowing for receiving the data 
promptly has to be faced, thus, as a next step, an optimal 
interval between the interrupts on different levels of the 
communication hierarchy is going to be estimated. In addition, 
a possibility of distributing the tasks among several user 
processes, each in charge of a certain group of simulation 
processes will be examined. 

 A TEST CASE 

To evaluate our concepts, we have coupled our framework, 
on one side, to a C++ 2D simulation of heat conduction 
(described by Laplace heat equation) in a given region over 
time. Solutions of the heat equation are characterised by a 
gradual smoothing of the initial temperature distribution by the 
heat flow from warmer to colder areas of a domain. This means 
that different states and starting conditions will tend toward the 
same stable equilibrium. After discretising using a Finite 
Difference scheme for updating the values, we come up with a 
five-point stencil. The system of linear equations is then solved 
using the Gauss-Seidel iterative method. 

 

 

 

 

 

 

 

 

 

 

On the other side, we have coupled our framework to a 
graphical user interface using the wxWidgets library. The 
temperature is represented along the z-axes, pointing upward,   
hence, showing the variations of the temperature in the 
corresponding 2D domain. The simulation and the visualisation 
are implemented as separate MPI processes. 

B. Initial Settings 

The very first settings, which include grid generation, error 
tolerance, and maximal number of iterations for the simulation, 
are specified by a user via graphical user interface (Figure 4a). 
Immediately after defining these parameters, one can define the 
boundaries of the domain and set points with certain fixed 
values of the temperature, so-called pillars (Figure 4b). 

C. User Interaction 

When it comes to interplay with the program during the 
simulation, there are a few possibilities available – one can 
interactively add, delete or move pillars, add, delete, or move 
boundary points, change maximal possible number of iterations 
and error tolerance. 

However, every time the change is performed by a user and 
the simulation becomes aware of it, the computation is 
restarted. Thus, what is unfortunately not feasible on a 
300×300 grid, due to the short intervals between two restarts in 
the case of ―hand over fist‖ user interaction, is an instant 
estimation of the equilibrium state for points of the domain far 
away from pillars, as shown in Figure 5b. In this case, we profit 
from the hierarchical approach, introduced already in the next 
subsection. 

D. Hierarchical Approach 

Our hierarchical approach is based on the usage of several 
different grids depending on the frequency of the user 
interaction. The principle on the example of the test case is as 
follows: At the beginning, the initial grid is used for the 
computation. In the case that some user interaction occurs, the 
simulation process recognises it, and, as soon as it restarts the 
computation with the updated settings, the coarser grids are 
used, the level of coarseness being determined based on the 
frequency of user‘s activity. 
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Figure 4.  a) Initial settings; b) simulation running with initial border and pillar settings on a grid 300×300, with error tolerance e-05 and maximal 

number of iterations set to 10,000. 

 



 

 

 

 

 

 

 

 

 

In this particular test case, we are using three different 
grids.  esides the initial 3   3   grid  Figure  a , the four 
times smaller, intermediate one  Figure  b , is used in the case 
of lower pace of interactions    adding/deleting pillars or 
boundary points, e.g. Finally, the coarsest, 75×75 (Figure 6c) is 
brought into play for the occasion of the very high frequency of 
moving boundary points or pillars over the domain. 

Although at this point, one does not have completely 
accurate results, the tendency of the running simulation in the 
overall domain can be easily and instantly observed, 
independently on the number and rate of changes applied. At 
last, when the current settings satisfy user‘s requirements, no 
more interaction is involved and the stage of calculating more 
accurate results is reached again.    

Namely, as soon as the simulation at the back-end realises 
that there has been no front-end intervention for a user-
predefined time slot, it stops, switches back to one of the finer 
grids, depending on the slot, and starts a new computation. 

In this case, the results of the previous computing on the 
coarser grid are discarded. To speed up reaching the heat 
equilibrium on finer grids, a multi-level method, where the 
previous precious results are reused, is exploited, as 
commented on in more detail in the Subsection III.D. 

Referring to what has already been said in this section, it is 
important to point out that the hierarchical approach we have in 
mind for the future test cases is not limited to recursive 
coarsening the grid. On the contrary, one can analogously 
 

                                                                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

utilize other simulation-specific hierarchies (different 
polynomial degrees of basis functions in Finite Element 
scheme approximation, e.g.) and any user of the framework can, 
if needed, easily adopt it to his individual requirements. 

E. Multi-level Approach 

In order to avoid wasting the computational cycles within 
the runtime while the user is interacting, we employ a multi-
level algorithm, i.e. the results of the computation on the 
coarsest grid are not disposed of when switching to the finer 
one. Namely, our concept already involves a hierarchy of 
discretisations as in multigrid algorithm and we profit from the 
analogous idea. Nevertheless, instead of accelerating the 
convergence of a basic iterative method by global correction 
from time to time, accomplished by solving a coarser problem, 
i.e. descending to the coarser grids and calculating an error, as 
in multigrid algorithm, our scheme starts with the solution on 
the coarsest grid and only uses the result we gain as an initial 
guess of a result on a finer one (see Fig. 7). 

As expected, the results show clearly that the speed of 
convergence is significantly higher with the new approach. 

For the examples of the settings we tested including an 
initial 300×300 grid and several different pillar Pi (xi, yi) and 
boundary Bj (xj, yj) points with corresponding ordered pairs (xk, 
yk) of x- and y-axes indices respectively and the error tolerance 
set to e-05, the number of iterations needed for convergence 
both on the intermediate and the initial grid can be significantly 
improved. 

 

 

 

 

 

 

 

 

 

 

 

                      

Figure 6.  Switching from the finest grid (grid 1: 300x300) by adding/deleting pillars/boundaries to the intermediate (grid 2: 150x150) 

and, finally, when moving pillars/boundaries, to the coarsest one (grid 3: 75x75) and reversely to the initial grid when there is an interval without 
any interaction. 

 

Figure 5.  a) An initial scenario;  b) moving pillars/boundaries rapidly leads to the continual restart of the computation and inability to estimate the 

equilibrium temperature in the region farther away from the pillars, i.e. reached in later iterations. 

 



 

 

 

 

 

 

 

 

 

 

 

CODE MODIFICATION REQUIREMENTS 

To integrate the framework into any application scenario, a 
few modifications of the code have to be made by the user. 
Since these modifications are only minor, we list all of them. 

First of all, all the variables which will be affected by the 
interrupt handler in order to force the restart of the computation    
have to be declared both global (Figure 8) and atomicity of 
their updates and prevention of the compiler optimisations 
which would lead to incorrect value references insured. 

Second of all, the integrity of each user-defined ‗atomic‘ 
sequence of instructions in the simulation code has to be 
ensured. 

Furthermore, the calls to the provided send and receive 
functions which would be interface to our framework have to 
be included in the appropriate places in the code. 

Nevertheless, the user himself should instruct the 
interpretation of the data (in the receive buffers on both 
simulation and visualisation side, e.g.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, he has to enable the regular checks for updates by 
including appropriate functions which will examine and change 
the default signal (interrupt) action, specifying in the same time 
the time interval in which the checks of the simulation 
process(es) should be made, as shown in the pseudo code 
example. 

RESULTS 

So as to evaluate potential overheads caused  by integration 
of our framework, we have done measurements, the average of 
several being graphically represented in Figure 9. 

First of all, concerning the non-hierarchical approach, what 
has been estimated for the cases of single-, two- and four-
threaded simulation and the different initial problem sizes: 
1000×1000 (Figure 9a), 500×500 (Figure 9b) and 300×300 
(Figure 9c), was the overhead caused only by cyclic 
interruption of the simulation every millisecond, realising that 
there is no update available, since on the front-end the user is 
absolutely not interfering. What is easily observable concerning 
the total execution time of the simulation for all the three  
aforementioned scenarios is that this kind of overhead, caused, 
as a matter of fact, only by raising interrupts which do a 
message probing, can be neglected. 

In the same three graphs of Figure 9, the runtime  
estimations which have been illustrated make it easy to 
compare the total execution time of the simulation with or 
without updates sent from the front-end. The measurements  
have been made for the case of user interaction occurring 
repeatedly, every 5 milliseconds. The conclusion is that in the 
case of two or four threads for the specified problem sizes one 
may only observe very small overheads, while in the case of a 
single thread being interrupted and restarting its computation 
with aforementioned high, and one must point out very unlikely, 
frequency of user interaction, more significant overheads may 
be introduced. These results are as expected, concerning the 
fact that our tests show that the number of interrupts where 
interaction is recognised in the case of a single thread is almost 
three times bigger (ca. 2500) than in the case of two and almost 
5 times than in the case of 4 threads. Thus, the amount of 
computational cycles we discard in this scenario is larger.    

Figure 7.  Copying the results (temperature values) from the computation on the coarser grid to the initial vectors of the finer 

one. 

 

Figure 8.  Pseudo code which exemplifies for an 

iterative solver the code modifications  necessary to integrate the 
framework into any application. 

# Function to override the default interrupt action 

My_interrupt_action() { 

If(update_available) { 
Receive_update() 
Manipulate_state_variables() 

} 
} 
 

# declare here state variables global and volatile 
 
main( ) { 

Set_interrupt_action (My_interrupt_action); 

      Set_interrupt_timer (INTERVAL) # initiate 1st interrupt 

     Iterative_solver ()  # interrupt can occur here at any point 

} 



At the point at which we have introduced the hierarchical 
approach based on switching between three different grids, so 
as to compare the two approaches, we have decided to measure 
the execution time in the case of non-periodical user interaction, 
being performed as a series of 5 millisecond frequent changes, 
with half of a second long intervals in between. The overhead 
caused in non-hierarchical scenario for 1000×1000 grid and 
one thread, which is most challenging case, for this new 
predefined occurrence of user interference is proven to be 
similar as in Figure 9a. Nevertheless, the hierarchical approach 
outcome show that the aforementioned overhead in the 
example with one thread is drastically reduced in comparison 
to the non-hierarchical. In other words, the time of executing 
the same number of iterations, but now making use of three 
different grids is very close to the execution time  
without any interrupts, although in some number of iterations, 
while the interaction is very frequent, the user would have to 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

agree with lower accuracy consequences. For two or four 
threads, this overhead turns out to be even smaller (Figure 9d). 

CONCLUSION 

In this paper, we have presented a generic platform which 
couples simulation codes and visualisation tools in the way 
which allows a user to trigger a simulation during the runtime, 
based on a ‗minimal invasion‘ principle, i.e. minor code 
changes necessary, and receive prompt feedback. Although the 
results for the first test cases look very promising the question 
of the signal transfer from a user to all the computing nodes in 
the case of massively parallel simulation is a part of the current 
research, as well as the integration and testing of the 
framework incorporated into several parallel engineering 
simulation scenarios. One of our most imminent intentions is 
the existing p-FEM code used for computational orthopaedics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  a) b) c) Non-hierarchical approach: estimations of the overall execution time in seconds  (vertical axis) for 1, 2 and 4 

threads (horizontal axis) doing the computations on grid 1000×1000, 500×500 and 300×300 respectively; square and cross markers 

represent respectively the values without and with checks for updates on simulation side, without any user interference actually occurring 

and almost completely overlap each other; triangle markers show the values with user interaction rate of 5 milliseconds. d) Hierarchical 

approach: measurements of the overall time in seconds (vertical axis) for 1, 2 and 4 threads (horizontal axis) in the case of series of user 

interaction occurring every 5 milliseconds, with 0.5 seconds break in between series; triangular and square markers connected with solid 

line show overheads of the time in the case of user interaction in comparison to the pure execution time, similarly as in a), while the 

markers connected with dotted line show how these overheads are minimized using hierarchical approach, compromising the accuracy. 

a)                                                                                                  b) 

c)                                                                                         d) 
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