
Integrate Processing into Exhibition Contents
Authoring System

Songlin Piao, Jae-ho Kwak, Jong-Min Hyun, Whoi-Yul Kim
Department of Electrical and Computer Engineering

Hanyang University
Seoul, Korea 133–791

Email: {slpiao,jhkwak,jmhyun}@vision.hanyang.ac.kr
wykim@hanyang.ac.kr

Abstract—The procedure of integrating processing, a famous
open source programming language and integrated development
environment (IDE) built for the media artists, into Exhibition
Contents Authoring System (ECAS) is presented in this article.
The detailed architecture of Processing and ECAS is analyzed.
The final system is implemented using Eclipse Modeling Frame-
work (EMF) and Graphical Modeling Framework (GMF) based
on Eclipse Rich Client Platform. With this tool, artists could
present their works written in Processing easily inside ECAS.

Index Terms—Media Art, Authoring, GMF, Eclipse, RCP,
Processing, Plug-in.

I. INTRODUCTION

Processing is an open source programming language and
IDE built for the electronic arts and visual design communities
with the purpose of teaching the basics of computer pro-
gramming in a visual context, and to serve as the foundation
for electronic sketchbooks [1], [2]. Ecas was developed in
order to provide easier and faster way to compose media
art for the media artists who do not know how to program
even a single line of code [3]. All they need to do is just
drop and drag components of their choice, and then just
connect these components in particular sequence by drawing
lines between them. ECAS was developed using graphical
modeling framework [4]. As one of the most popular media art
composition tools, Processing has already provided plenty of
high quality examples. It is necessary to integrate Processing
functionality into ECAS in order to reuse so many already
existing resources.

A. Related Work

It is becoming easier and faster for the artists to create their
works thanks to the development of computer technology. But
there are still some limitations. One of them is that they still
have to write programming code to some degree. However,
most of professional artists do not know how to program
even a single line of code. Our software Exhibition Contents
Authoring System (ECAS), a media art contents authoring
tool, has been developed for those artists in mind so that they
could create their media art contents very easily.

There are several media art contents authoring tools avail-
able on the market in the form of commercial software or
open source software. Max/MSP [5] and Processing [2] are
two of the most widely used programs all over the world.

Max was originally written by Miller Puckette as the patch
editor for the Macintosh [1]. Then it was further developed
by third parties to extend its functions gradually. There is an
open source version of Max named Pure Data [6]. Pure Data,
also developed by Miller, is an alternative tool for the students
who learn digital music. Processing was firstly developed by
the MIT Media lab in order to help out the artists who suffered
from programming code. The development began in 2001 and
the stable version 1.0 was firstly released by the year 2008.
There are many media art contents developed and implemented
using Processing. Fig. 1(a) and Fig. 1(b) show the snapshots
of ECAS and Processing, respectively.

Besides these programs, there are also other media art con-
tents authoring tools like VVVV [7], Quartz Composer [8] and
Open Frameworks [9]. VVVV was designed to facilitate the
handling of large media environments with physical interfaces,
real-time motion graphics, audio and video that can interact
with many users simultaneously [7]. Quartz Composer is a
node-based visual programming language provided as part of
Xcode in Mac OS X [1]. Open Frameworks is a C++ library
designed to assist the creative process by providing a simple
and intuitive framework for experimentation [9].

Although the above tools are already convenient to use,
there are still some obstacles that prevent media artists from
easy creating their media contents using the tools [3]. ECAS
was developed to be a cheap, easy to use, stable and efficient
multi-platform media art authoring tool. The speed of ECAS
is as fast as C/C++ based application thanks to the Java Native
Interface and Just-in-time [10] compiling technology. Fig. 2(a)
shows the case for testing face detection in ECAS version
1.0. The face detect function block is used for detecting faces
inside one image frame. First, sequential images are grabbed
from camera block then the camera block sends the data to the
face detect block. The face detect block would detect human
faces at each frame then send the result to the code box. Test
code is set inside the code box block in order to retrieve the
face information and draw it to the image buffer. Fig. 2(b)
shows the same function implemented in Processing. Users
need to write down about 50 lines code, but ECAS only uses
five blocks.

The remainder of this paper is organized as follows. Section
II discusses the whole architecture of ECAS and Processing,



Fig. 1. ECAS and Processing

(a) Video test (b) Face detection in Process-
ing

Fig. 2. Face Detection test

respectively. Subsection II(A) introduces the main architecture
of Processing. Subsection II(B) shows the architecture of
ECAS in the current state and Subsection II(C) shows the
architecture of ECAS in the future. The integration procedure
will be introduced in subsection II(D). Section III gives the
experimental result and conclusion.

II. ARCHITECTURE

A. Architecture of Processing

The UI part of Processing is written in Swing [11], while
the UI part of ECAS is written in SWT [12]. There is no big
difference at performance between these two libraries. So we
focus on the analysis to the logic part. Fig. 3 shows the main
architecture of Processing. The initial input of Processing is
text files whose extension is ”pde”. Then the source file would
be translated to java files by the translator. The procedure is
the most important part in Processing. The generated java files
are directly complied to the executive class files by the Batch
Compiler class which is defined inside JDK. Finally, JVM will
run the Byte code to show the execution result.

As it is said before, the translation part is the key part in the
whole procedure. There are totally two grammar files defined
inside Processing project. One is ”java15.g” and the other

Fig. 3. Processing architecture

Fig. 4. ECAS architecture

is ”pde.g”. These two files are the grammar files from the
ANTLR V2 [13], which is a language tool that provides a
framework for constructing recognizers, interpreters, compil-
ers, and translators form grammatical descriptions containing
actions in a variety of target languages. In the case of Pro-
cessing, the target language is Java. ”pde.g” is the grammar
definition file of Processing language itself and ”java15.g”
is the grammar definition file of java language version 1.5.
”pde.g” depends on ”java15.g” when it translates Abstract
Syntax Tree of Processing language to the Java language.

B. Architecture of ECAS in the current state

The ECAS system consists of two major parts: graphical
user interface and program’s logic. Usually, Graphical Editing
Framework (GEF) [14] and Eclipse Modeling Framework
(EMF) [15], [16] are used for designing GUI and program’s
logic, respectively. But Eclipse provides more convenient way
to generate GUI and program’s logic simultaneously. The
framework used here is GMF which is the combination of GEF
and EMF. That is, instead of designing each part separately,
infrastructure of the whole program is firstly designed using
GMF and then the generated source code would be further
modified manually to be fully functional. Fig. 4 shows these
relationships.

First step is to create domain model, actually this is the
part which is very closely related to program’s logic. In the
current version of ECAS, about 42 classes are defined inside
the domain model file (Fig. 5). The basic class here is named
Process, because each block can be seen as a process when
program is running. Seven methods are defined inside the
Process class. They are listed below:

• void connect(Process target)
• void receiveMessage(Data data)
• void init() throws Exception
• void start()



Fig. 5. ECAS function modeling

Fig. 6. ECAS structure

• void process(Data param)
• void destroy()
• void stop() throws InterruptedException
The default generated source code is just the skeleton of

the whole program. It already can run in this state, but the
program cannot do real functions what artists want. Additional
functions should be extended manually. As it was mentioned
before, there are two main parts: one is GUI and the other is
logic. We focus on the logic part here. Fig. 7 shows the main
concept of each function block. When the program is running,
each node receives message from the previous node and stores
data to the input variable. In order to further process, the node
first calls get() method to get the data from the input then uses
process() method to do real logical processing, finally, the node
will call send() method to transfer the result to the next nodes.

C. Architecture of ECAS in the future

Every block used inside ECAS is implemented as a thread.
Although the thread can go to sleep when there is nothing to

Fig. 7. process flow

Fig. 8. ECAS logic architecture in the future

Fig. 9. ECAS UI architecture in the future

do, it still remains inefficient compared to those using static
compiling method. We will shortly describe the architecture
of ECAS in the future.

Fig. 8 shows the architecture from the logical perspective.
Currently, visual information is stored inside a xml file. We
will define a domain specific language which could describe
the visual relationship of the nodes more efficiently. We are
considering subset of Modelica language [17], which is an
object-oriented, declarative, multi-domain modeling language
for component oriented modeling of complex systems. We are
developing language parser using ANTLR and Xtext [18].

Fig. 9 shows the architecture from the UI part. GMF has
already provided us about 23 extension points. One could
implement some functionality by extending one of these
extension points. We would provide component in the future,
which would implement the most of the basic extension points
GMF provides. Then we would let our own extension points
to the third party. This mechanism could provide much more
flexibility to the current ECAS system.

D. Integrate Processing into ECAS

As it is shown in Fig. 10, we defined the five additional
attributes inside ProcessingParser function block. They are
Mode type, Output path, Platform type, Preference path and

Fig. 10. Integrate Processing into ECAS



Fig. 11. Editing PDE files inside ECAS

Sketch path. There are seven modes inside Processing: ”–
help”, ”–preprocess”, ”–build”, ”–run”, ”–present”, ”–export-
applet”, ”–export-application”. The available platform types
are ”windows”, ”linux”, ”macosx”. Users could modify prop-
erties using property sheet. One can also modify the corre-
sponding pde source files by double clicking the Processing-
Parser node as it is shown in Fig. 11. It is implemented by
overriding perfomRequest(Request request) function inside
the ProcessingParserEditPart.

III. EXPERIMENT AND CONCLUSION

Fig. 12 shows the test result. We put camera display and
ProcessingParser together in one diagram editor. The result is
the same as we expected.

The procedure of integrating Processing into ECAS is
presented in this paper. It can provide media artists more
efficient and easier way of creating media so that they could
create art contents by using existing Processing resources
directly. Currently the Processing can only be converted to the
java language version 1.5. In order to get higher compatibility,
we need to rewrite java15.g grammar file so that the translation
could support latest java version.

ACKNOWLEDGMENT

This work was supported by the Brain Korea 21 Project in
2010.

Fig. 12. Test result

REFERENCES

[1] Wikipedia. http://en.wikipedia.org.
[2] Processing - open source programming language for media art. http:

//www.processing.org.
[3] Songlin Piao, Jae-Ho Kwak, and Whoi-Yul Kim. Research on eclipse

based media art authoring tool for the media artist. In Entertainment
Computing - ICEC 2010, volume 6243 of Lecture Notes in Computer
Science, pages 342–349. Springer Berlin / Heidelberg, 2010.

[4] Graphical modeling framework. http://www.eclipse.org/modeling/gmf.
[5] Cycling74 - tools for media. http://www.cycling74.com.
[6] Puredata community site. http://puredata.info.
[7] A multipurpose toolkit. http://www.vvvv.org.
[8] working with quartz composer. http://developer.apple.com.
[9] open source c++ toolkit for creative coding. http://www.

openframeworks.cc.
[10] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito,

K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of the ibm java
just-in-time compiler. IBM Syst. J., 39(1):175–193, 2000.

[11] Bruce Eckel. Thinking in Java. Prentice Hall, Upper Saddle River, NJ,
4. edition, 2006.

[12] Matthew Scarpino, Stephen Holder, Stanford Ng, and Laurent Mi-
halkovic. SWT/JFace in Action: GUI Design with Eclipse 3.0 (In Action
series). Manning Publications Co., Greenwich, CT, USA, 2004.

[13] Terence Parr. The Definitive ANTLR Reference: Building Domain-
Specific Languages. Pragmatic Programmers. Pragmatic Bookshelf, first
edition, May 2007.

[14] Eclipse graphical editing framework. http://www.eclipse.org/gef.
[15] Eclipse modeling framework. http://www.eclipse.org/modeling/emf.
[16] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.

EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional,
2009.

[17] Wladimir Schamai. Modelica modeling language (modelicaml): A uml
profile for modelica. Technical report, 2009.

[18] Moritz Eysholdt and Johannes Rupprecht. Migrating a large modeling
environment from xml/uml to xtext/gmf. In Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion, SPLASH ’10, pages
97–104, New York, NY, USA, 2010. ACM.


